BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21177113)

  • 1. Predicting the yield of (177)Lu radionuclide produced by the cyclic irradiation technique.
    Odame Duodu G; Akaho EH; Serfor-Armah Y; Nyarko BJ; Afi Achoribo E
    Appl Radiat Isot; 2011 Mar; 69(3):588-93. PubMed ID: 21177113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of 177Lu at the new research reactor FRM-II: Irradiation yield of 176Lu(n,gamma)177Lu.
    Dvorakova Z; Henkelmann R; Lin X; Türler A; Gerstenberg H
    Appl Radiat Isot; 2008 Feb; 66(2):147-51. PubMed ID: 17900914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility study for production of I-131 radioisotope using MNSR research reactor.
    Elom Achoribo AS; Akaho EH; Nyarko BJ; Osae Shiloh KD; Odame Duodu G; Gibrilla A
    Appl Radiat Isot; 2012 Jan; 70(1):76-80. PubMed ID: 21900016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target burn-up corrected specific activity of 177Lu produced via 176Lu(n, gamma) 177Lu nuclear reactions.
    Zhernosekov KP; Perego RC; Dvorakova Z; Henkelmann R; Türler A
    Appl Radiat Isot; 2008 Sep; 66(9):1218-20. PubMed ID: 18359234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The feasibility study of
    Golabian A; Hosseini MA; Ahmadi M; Soleimani B; Rezvanifard M
    Appl Radiat Isot; 2018 Jan; 131():62-66. PubMed ID: 29173809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A new correction method for radionuclide formation in neutron activation analysis using a reactor power meter coupled with a microcomputer].
    Hirai S; Yoshino Y; Suzuki S; Horiuchi N
    Radioisotopes; 1982 May; 31(5):229-34. PubMed ID: 7134499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of No-Carrier Added Lutetium-177 by Irradiation of Enriched Ytterbium-176.
    Tarasov VA; Andreev OI; Romanov EG; Kuznetsov RA; Kupriyanov VV; Tselishchev IV
    Curr Radiopharm; 2015; 8(2):95-106. PubMed ID: 25771378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of neutron flux spectra in irradiation sites of MNSR reactor using the Westcott-formalism for the k0 neutron activation analysis method.
    Akaho EH; Nyarko BJ
    Appl Radiat Isot; 2002 Aug; 57(2):265-73. PubMed ID: 12150286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of natural Hf and Ta in relation to the production of 177Lu.
    Medvedev DG; Mausner LF; Greene GA; Hanson AL
    Appl Radiat Isot; 2008 Oct; 66(10):1300-6. PubMed ID: 18456503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-section measurement of the 169 Tm p,n reaction for the production of the therapeutic radionuclide 169 Yb and comparison with its reactor-based generation.
    Spahn I; Takács S; Shubin YN; Tárkányi F; Coenen HH; Qaim SM
    Appl Radiat Isot; 2005 Aug; 63(2):235-9. PubMed ID: 15919210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of cyclotron-produced 186Re and comparison with reactor-produced 186Re and generator-produced 188Re for the labeling of bombesin.
    Moustapha ME; Ehrhardt GJ; Smith CJ; Szajek LP; Eckelman WC; Jurisson SS
    Nucl Med Biol; 2006 Jan; 33(1):81-9. PubMed ID: 16459262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical optimization of production by deuteron irradiation of high specific activity (177g)Lu suitable for radioimmunotherapy.
    Manenti S; Bonardi ML; Gini L; Groppi F
    Nucl Med Biol; 2014; 41(5):407-9. PubMed ID: 24666720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The low-energy β(-) and electron emitter (161)Tb as an alternative to (177)Lu for targeted radionuclide therapy.
    Lehenberger S; Barkhausen C; Cohrs S; Fischer E; Grünberg J; Hohn A; Köster U; Schibli R; Türler A; Zhernosekov K
    Nucl Med Biol; 2011 Aug; 38(6):917-24. PubMed ID: 21843788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation function for deuteron induced nuclear reactions on natural ytterbium for production of high specific activity 177g Lu in no-carrier-added form for metabolic radiotherapy.
    Manenti S; Groppi F; Gandini A; Gini L; Abbas K; Holzwarth U; Simonelli F; Bonardi M
    Appl Radiat Isot; 2011 Jan; 69(1):37-45. PubMed ID: 20801665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Availability of rhenium-188 from the alumina-based tungsten-188/rhenium-188 generator for preparation of rhenium-188-labeled radiopharmaceuticals for cancer treatment.
    Knapp FF; Beets AL; Guhlke S; Zamora PO; Bender H; Palmedo H; Biersack HJ
    Anticancer Res; 1997; 17(3B):1783-95. PubMed ID: 9179235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic radionuclides: production and decay property considerations.
    Volkert WA; Goeckeler WF; Ehrhardt GJ; Ketring AR
    J Nucl Med; 1991 Jan; 32(1):174-85. PubMed ID: 1988628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale production of lutetium-177m for the
    Bhardwaj R; Ponsard B; Sarilar M; Wolterbeek B; Denkova A; Serra-Crespo P
    Appl Radiat Isot; 2020 Feb; 156():108986. PubMed ID: 31786419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and in vitro stability of (n,gamma) yttrium-90 hydroxyapatite.
    Khalid M; Mushtaq A
    Appl Radiat Isot; 2005 Apr; 62(4):587-90. PubMed ID: 15701413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing renal uptake of 90Y- and 177Lu-labeled alpha-melanocyte stimulating hormone peptide analogues.
    Miao Y; Fisher DR; Quinn TP
    Nucl Med Biol; 2006 Aug; 33(6):723-33. PubMed ID: 16934691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of advances in the last decade on targeted cancer therapy using
    Chakravarty R; Chakraborty S
    Am J Nucl Med Mol Imaging; 2021; 11(6):443-475. PubMed ID: 35003885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.