BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 21177271)

  • 1. Microdosimetric characteristics of proton beams from 50 keV to 200 MeV.
    Chen J
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):436-9. PubMed ID: 21177271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microdosimetric characteristics of carbon track-segments.
    Chen J
    Radiat Prot Dosimetry; 2007; 126(1-4):445-8. PubMed ID: 17525065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microdosimetric measurements of a monoenergetic and modulated Bragg Peaks of 62 MeV therapeutic proton beam with a synthetic single crystal diamond microdosimeter.
    Verona C; Cirrone GAP; Magrin G; Marinelli M; Palomba S; Petringa G; Rinati GV
    Med Phys; 2020 Nov; 47(11):5791-5801. PubMed ID: 32974938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microdosimetric measurements of a clinical proton beam with micrometer-sized solid-state detector.
    Anderson SE; Furutani KM; Tran LT; Chartier L; Petasecca M; Lerch M; Prokopovich DA; Reinhard M; Perevertaylo VL; Rosenfeld AB; Herman MG; Beltran C
    Med Phys; 2017 Nov; 44(11):6029-6037. PubMed ID: 28905399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of basic features of proton and helium ion pencil beams in water using GATE.
    Ströbele J; Schreiner T; Fuchs H; Georg D
    Z Med Phys; 2012 Sep; 22(3):170-8. PubMed ID: 22265081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microdosimetry of the full slowing down of protons using Monte Carlo track structure simulations.
    Liamsuwan T; Uehara S; Nikjoo H
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):29-33. PubMed ID: 25904698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diamond based integrated detection system for dosimetric and microdosimetric characterization of radiotherapy ion beams.
    Verona C; Barna S; Georg D; Hamad Y; Magrin G; Marinelli M; Meouchi C; Verona Rinati G
    Med Phys; 2024 Jan; 51(1):533-544. PubMed ID: 37656015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spread-out antiproton beams deliver poor physical dose distributions for radiation therapy.
    Paganetti H; Goitein M; Parodi K
    Radiother Oncol; 2010 Apr; 95(1):79-86. PubMed ID: 19394098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical and biophysical properties of proton tracks of energies 1 keV to 300 MeV in water.
    Liamsuwan T; Uehara S; Emfietzoglou D; Nikjoo H
    Int J Radiat Biol; 2011 Feb; 87(2):141-60. PubMed ID: 21281230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microdosimetry of proton and carbon ions.
    Liamsuwan T; Hultqvist M; Lindborg L; Uehara S; Nikjoo H
    Med Phys; 2014 Aug; 41(8):081721. PubMed ID: 25086531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry.
    Kirby D; Green S; Palmans H; Hugtenburg R; Wojnecki C; Parker D
    Phys Med Biol; 2010 Jan; 55(2):417-33. PubMed ID: 20019399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
    Titt U; Zheng Y; Vassiliev ON; Newhauser WD
    Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relative biological effectiveness for carbon, nitrogen, and oxygen ion beams using passive and scanning techniques evaluated with fully 3D silicon microdosimeters.
    Tran LT; Bolst D; Guatelli S; Pogossov A; Petasecca M; Lerch MLF; Chartier L; Prokopovich DA; Reinhard MI; Povoli M; Kok A; Perevertaylo VL; Matsufuji N; Kanai T; Jackson M; Rosenfeld AB
    Med Phys; 2018 May; 45(5):2299-2308. PubMed ID: 29572856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionization ranges of protons in water vapour in the energy range 1-100 keV.
    Baek WY; Grosswendt B; Willems G
    Radiat Prot Dosimetry; 2006; 122(1-4):32-5. PubMed ID: 17164281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of doses for large-angle Coulomb scattering of proton pencil beams.
    Ciangaru G; Sahoo N; Zhu XR; Sawakuchi GO; Gillin MT
    Phys Med Biol; 2009 Dec; 54(24):7285-300. PubMed ID: 19926912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microdosimetric investigation at the therapeutic proton beam facility of CATANA.
    De Nardo L; Moro D; Colautti P; Conte V; Tornielli G; Cuttone G
    Radiat Prot Dosimetry; 2004; 110(1-4):681-6. PubMed ID: 15353730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated LET components in clinical proton beams.
    Grassberger C; Paganetti H
    Phys Med Biol; 2011 Oct; 56(20):6677-91. PubMed ID: 21965268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak.
    González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A
    Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifying proton fluence spectra to generate spread-out Bragg peaks with laser accelerated proton beams.
    Schell S; Wilkens JJ
    Phys Med Biol; 2009 Oct; 54(19):N459-66. PubMed ID: 19741280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A particle track-repeating algorithm for proton beam dose calculation.
    Li JS; Shahine B; Fourkal E; Ma CM
    Phys Med Biol; 2005 Mar; 50(5):1001-10. PubMed ID: 15798272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.