These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21177289)

  • 1. Spectral modulation attenuates molecular, endocrine, and neurobehavioral disruption induced by nocturnal light exposure.
    Rahman SA; Marcu S; Shapiro CM; Brown TJ; Casper RF
    Am J Physiol Endocrinol Metab; 2011 Mar; 300(3):E518-27. PubMed ID: 21177289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting human nocturnal nonvisual responses to monochromatic and polychromatic light with a melanopsin photosensitivity function.
    Revell VL; Barrett DC; Schlangen LJ; Skene DJ
    Chronobiol Int; 2010 Oct; 27(9-10):1762-77. PubMed ID: 20969522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectively filtering short wavelengths attenuates the disruptive effects of nocturnal light on endocrine and molecular circadian phase markers in rats.
    Rahman SA; Kollara A; Brown TJ; Casper RF
    Endocrinology; 2008 Dec; 149(12):6125-35. PubMed ID: 18687787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alerting effects of light are sensitive to very short wavelengths.
    Revell VL; Arendt J; Fogg LF; Skene DJ
    Neurosci Lett; 2006 May; 399(1-2):96-100. PubMed ID: 16490309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-wavelength attenuated polychromatic white light during work at night: limited melatonin suppression without substantial decline of alertness.
    van de Werken M; Giménez MC; de Vries B; Beersma DG; Gordijn MC
    Chronobiol Int; 2013 Aug; 30(7):843-54. PubMed ID: 23705821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced melatonin suppression in humans with polychromatic and monochromatic light.
    Revell VL; Skene DJ
    Chronobiol Int; 2007; 24(6):1125-37. PubMed ID: 18075803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blue light exposure reduces objective measures of sleepiness during prolonged nighttime performance testing.
    Phipps-Nelson J; Redman JR; Schlangen LJ; Rajaratnam SM
    Chronobiol Int; 2009 Jul; 26(5):891-912. PubMed ID: 19637049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of the human circadian system to short-wavelength (420-nm) light.
    Brainard GC; Sliney D; Hanifin JP; Glickman G; Byrne B; Greeson JM; Jasser S; Gerner E; Rollag MD
    J Biol Rhythms; 2008 Oct; 23(5):379-86. PubMed ID: 18838601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian rhythms, sleep, and the menstrual cycle.
    Baker FC; Driver HS
    Sleep Med; 2007 Sep; 8(6):613-22. PubMed ID: 17383933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-intensity red light suppresses melatonin.
    Hanifin JP; Stewart KT; Smith P; Tanner R; Rollag M; Brainard GC
    Chronobiol Int; 2006; 23(1-2):251-68. PubMed ID: 16687299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormonal and pharmacological manipulation of the circadian clock: recent developments and future strategies.
    Richardson G; Tate B
    Sleep; 2000 May; 23 Suppl 3():S77-85. PubMed ID: 10809190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral modulation of light wavelengths using optical filters: effect on melatonin secretion.
    Casper RF; Rahman S
    Fertil Steril; 2014 Aug; 102(2):336-8. PubMed ID: 25015557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-induced melatonin suppression: age-related reduction in response to short wavelength light.
    Herljevic M; Middleton B; Thapan K; Skene DJ
    Exp Gerontol; 2005 Mar; 40(3):237-42. PubMed ID: 15763401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a chronic reduction of short-wavelength light input on melatonin and sleep patterns in humans: evidence for adaptation.
    Giménez MC; Beersma DG; Bollen P; van der Linden ML; Gordijn MC
    Chronobiol Int; 2014 Jun; 31(5):690-7. PubMed ID: 24597610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of prior light exposure on early evening performance, subjective sleepiness, and hormonal secretion.
    Münch M; Linhart F; Borisuit A; Jaeggi SM; Scartezzini JL
    Behav Neurosci; 2012 Feb; 126(1):196-203. PubMed ID: 22201280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral sensitivity of melatonin suppression in the zebrafish pineal gland.
    Ziv L; Tovin A; Strasser D; Gothilf Y
    Exp Eye Res; 2007 Jan; 84(1):92-9. PubMed ID: 17067577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoperiodic modulation of clock gene expression in the avian premammillary nucleus.
    Leclerc B; Kang SW; Mauro LJ; Kosonsiriluk S; Chaiseha Y; El Halawani ME
    J Neuroendocrinol; 2010 Feb; 22(2):119-28. PubMed ID: 20002961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shedding light on circadian clock resetting by dark exposure: differential effects between diurnal and nocturnal rodents.
    Mendoza J; Revel FG; Pévet P; Challet E
    Eur J Neurosci; 2007 May; 25(10):3080-90. PubMed ID: 17561821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses.
    Hanifin JP; Lockley SW; Cecil K; West K; Jablonski M; Warfield B; James M; Ayers M; Byrne B; Gerner E; Pineda C; Rollag M; Brainard GC
    Physiol Behav; 2019 Jan; 198():57-66. PubMed ID: 30296404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of light and melatonin treatment on body temperature and melatonin secretion daily rhythms in a diurnal rodent, the fat sand rat.
    Schwimmer H; Mursu N; Haim A
    Chronobiol Int; 2010 Aug; 27(7):1401-19. PubMed ID: 20795883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.