BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21177771)

  • 1. Acute functional neurotoxicity of lanthanum(III) in primary cortical networks.
    Gramowski A; Jügelt K; Schröder OH; Weiss DG; Mitzner S
    Toxicol Sci; 2011 Mar; 120(1):173-83. PubMed ID: 21177771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional screening of traditional antidepressants with primary cortical neuronal networks grown on multielectrode neurochips.
    Gramowski A; Jügelt K; Stüwe S; Schulze R; McGregor GP; Wartenberg-Demand A; Loock J; Schröder O; Weiss DG
    Eur J Neurosci; 2006 Jul; 24(2):455-65. PubMed ID: 16903853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of acute neurotoxic effects of trimethyltin using neuronal networks cultured on microelectrode arrays.
    Gramowski A; Schiffmann D; Gross GW
    Neurotoxicology; 2000 Jun; 21(3):331-42. PubMed ID: 10894123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete inhibition of spontaneous activity in neuronal networks in vitro by deltamethrin and permethrin.
    Shafer TJ; Rijal SO; Gross GW
    Neurotoxicology; 2008 Mar; 29(2):203-12. PubMed ID: 18304643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro.
    Xiang G; Pan L; Huang L; Yu Z; Song X; Cheng J; Xing W; Zhou Y
    Biosens Bioelectron; 2007 May; 22(11):2478-84. PubMed ID: 17071071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. d-Methionine protects against cisplatin-induced neurotoxicity in cortical networks.
    Gopal KV; Wu C; Shrestha B; Campbell KC; Moore EJ; Gross GW
    Neurotoxicol Teratol; 2012; 34(5):495-504. PubMed ID: 22732230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays.
    Krause G; Lehmann S; Lehmann M; Freund I; Schreiber E; Baumann W
    Biosens Bioelectron; 2006 Jan; 21(7):1272-82. PubMed ID: 16006112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro cortical neuronal networks as a new high-sensitive system for biosensing applications.
    Martinoia S; Bonzano L; Chiappalone M; Tedesco M; Marcoli M; Maura G
    Biosens Bioelectron; 2005 Apr; 20(10):2071-8. PubMed ID: 15741077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological effects of the marine toxins, brevetoxin and saxitoxin, on murine frontal cortex neuronal networks.
    Kulagina NV; O'shaughnessy TJ; Ma W; Ramsdell JS; Pancrazio JJ
    Toxicon; 2004 Nov; 44(6):669-76. PubMed ID: 15501293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex.
    Sun JJ; Luhmann HJ
    Eur J Neurosci; 2007 Oct; 26(7):1995-2004. PubMed ID: 17868367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine-induced dispersion of correlations between action potentials in networks of cortical neurons.
    Eytan D; Minerbi A; Ziv N; Marom S
    J Neurophysiol; 2004 Sep; 92(3):1817-24. PubMed ID: 15084641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of zinc toxicity using neuronal networks on microelectrode arrays.
    Parviz M; Gross GW
    Neurotoxicology; 2007 May; 28(3):520-31. PubMed ID: 17239951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The emergence and properties of mutual synchronization in in vitro coupled cortical networks.
    Baruchi I; Volman V; Raichman N; Shein M; Ben-Jacob E
    Eur J Neurosci; 2008 Nov; 28(9):1825-35. PubMed ID: 18973597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development.
    Chiappalone M; Bove M; Vato A; Tedesco M; Martinoia S
    Brain Res; 2006 Jun; 1093(1):41-53. PubMed ID: 16712817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Burst and principal components analyses of MEA data for 16 chemicals describe at least three effects classes.
    Mack CM; Lin BJ; Turner JD; Johnstone AF; Burgoon LD; Shafer TJ
    Neurotoxicology; 2014 Jan; 40():75-85. PubMed ID: 24325902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture.
    McLean MJ; Macdonald RL
    J Pharmacol Exp Ther; 1986 Jun; 237(3):1001-11. PubMed ID: 3086538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new cross-correlation algorithm for the analysis of "in vitro" neuronal network activity aimed at pharmacological studies.
    Biffi E; Menegon A; Regalia G; Maida S; Ferrigno G; Pedrocchi A
    J Neurosci Methods; 2011 Aug; 199(2):321-7. PubMed ID: 21605596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.
    Tuckwell HC
    J Physiol Paris; 2006; 100(1-3):88-99. PubMed ID: 17064883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From the Cover: Developmental Neurotoxicants Disrupt Activity in Cortical Networks on Microelectrode Arrays: Results of Screening 86 Compounds During Neural Network Formation.
    Frank CL; Brown JP; Wallace K; Mundy WR; Shafer TJ
    Toxicol Sci; 2017 Nov; 160(1):121-135. PubMed ID: 28973552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.