These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 21177774)

  • 61. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening.
    Nel A; Xia T; Meng H; Wang X; Lin S; Ji Z; Zhang H
    Acc Chem Res; 2013 Mar; 46(3):607-21. PubMed ID: 22676423
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A Review on Conventional and Advanced Methods for Nanotoxicology Evaluation of Engineered Nanomaterials.
    Leudjo Taka A; Tata CM; Klink MJ; Mbianda XY; Mtunzi FM; Naidoo EB
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770945
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A nanobiological approach to nanotoxicology.
    Nyland JF; Silbergeld EK
    Hum Exp Toxicol; 2009 Jun; 28(6-7):393-400. PubMed ID: 19755451
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Creative use of analytical techniques and high-throughput technology to facilitate safety assessment of engineered nanomaterials.
    Liu Q; Wang X; Xia T
    Anal Bioanal Chem; 2018 Sep; 410(24):6097-6111. PubMed ID: 30066194
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Moving beyond mass: the unmet need to consider dose metrics in environmental nanotoxicology studies.
    Hull M; Kennedy AJ; Detzel C; Vikesland P; Chappell MA
    Environ Sci Technol; 2012 Oct; 46(20):10881-2. PubMed ID: 23030824
    [No Abstract]   [Full Text] [Related]  

  • 66. Recent developments in nanotoxicology.
    Bolt HM; Marchan R; Hengstler JG
    Arch Toxicol; 2013 Jun; 87(6):927-8. PubMed ID: 22526375
    [No Abstract]   [Full Text] [Related]  

  • 67. What can nanosafety learn from drug development? The feasibility of "safety by design".
    Hjorth R; van Hove L; Wickson F
    Nanotoxicology; 2017 Apr; 11(3):305-312. PubMed ID: 28303735
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate.
    Zhu M; Nie G; Meng H; Xia T; Nel A; Zhao Y
    Acc Chem Res; 2013 Mar; 46(3):622-31. PubMed ID: 22891796
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [General and specific aspects of the toxic properties of nanoparticles and other chemical substances in the context of classical toxicology].
    Zholdakova ZI; Sinitsyna OO; Kharchevnikova NV
    Gig Sanit; 2008; (6):12-6. PubMed ID: 19198250
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation.
    Boverhof DR; David RM
    Anal Bioanal Chem; 2010 Feb; 396(3):953-61. PubMed ID: 19756533
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology.
    Oberdörster G
    J Intern Med; 2010 Jan; 267(1):89-105. PubMed ID: 20059646
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Methods, models, mechanisms and metadata: Introducing the Nanotoxicology collection at F1000Research.
    Lynch I; Nymark P; Doganis P; Gulumian M; Yoon TH; Martinez DST; Afantitis A
    F1000Res; 2021; 10():1196. PubMed ID: 34853679
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale.
    Halappanavar S; van den Brule S; Nymark P; Gaté L; Seidel C; Valentino S; Zhernovkov V; Høgh Danielsen P; De Vizcaya A; Wolff H; Stöger T; Boyadziev A; Poulsen SS; Sørli JB; Vogel U
    Part Fibre Toxicol; 2020 May; 17(1):16. PubMed ID: 32450889
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biomedical nanomaterials: applications, toxicological concerns, and regulatory needs.
    Oksel Karakus C; Bilgi E; Winkler DA
    Nanotoxicology; 2021 Apr; 15(3):331-351. PubMed ID: 33337941
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Editorial: Nanotoxicology and Nanomedicine: A special issue of the Food and Chemical Toxicology.
    Sahu SC
    Food Chem Toxicol; 2015 Nov; 85():1. PubMed ID: 26248127
    [No Abstract]   [Full Text] [Related]  

  • 77. Analytical Aspects of Nanotoxicology.
    Gunsolus IL; Haynes CL
    Anal Chem; 2016 Jan; 88(1):451-79. PubMed ID: 26565109
    [No Abstract]   [Full Text] [Related]  

  • 78. CompNanoTox2015: novel perspectives from a European conference on computational nanotoxicology on predictive nanotoxicology.
    Bañares MA; Haase A; Tran L; Lobaskin V; Oberdörster G; Rallo R; Leszczynski J; Hoet P; Korenstein R; Hardy B; Puzyn T
    Nanotoxicology; 2017 Sep; 11(7):839-845. PubMed ID: 28885075
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Metabolomics techniques for nanotoxicity investigations.
    Lv M; Huang W; Chen Z; Jiang H; Chen J; Tian Y; Zhang Z; Xu F
    Bioanalysis; 2015; 7(12):1527-44. PubMed ID: 26168257
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Molecular toxicity of nanomaterials.
    Chang XL; Yang ST; Xing G
    J Biomed Nanotechnol; 2014 Oct; 10(10):2828-51. PubMed ID: 25992420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.