These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21178227)

  • 1. Controlled in situ nanoscale enhancement of gold nanowire arrays with plasmonics.
    MacKenzie R; Fraschina C; Sannomiya T; Vörös J
    Nanotechnology; 2011 Feb; 22(5):055203. PubMed ID: 21178227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous electrical and plasmonic monitoring of potential induced ion adsorption on metal nanowire arrays.
    MacKenzie R; Fraschina C; Dielacher B; Sannomiya T; Dahlin AB; Vörös J
    Nanoscale; 2013 Jun; 5(11):4966-75. PubMed ID: 23632884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemistry on a localized surface plasmon resonance sensor.
    Sannomiya T; Dermutz H; Hafner C; Vörös J; Dahlin AB
    Langmuir; 2010 May; 26(10):7619-26. PubMed ID: 20020724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Position controlled nanowire growth through Au nanoparticles synthesized by galvanic reaction.
    Tseng CH; Tambe MJ; Lim SK; Smith MJ; Gradecak S
    Nanotechnology; 2010 Apr; 21(16):165605. PubMed ID: 20351413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubule-based gold nanowires and nanowire arrays.
    Zhou JC; Gao Y; Martinez-Molares AA; Jing X; Yan D; Lau J; Hamasaki T; Ozkan CS; Ozkan M; Hu E; Dunn B
    Small; 2008 Sep; 4(9):1507-15. PubMed ID: 18752207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon resonance changes of gold nanoparticle arrays upon modification.
    Ha DH; Kim S; Yun YJ; Park HJ; Yun WS; Song JH
    Nanotechnology; 2009 Feb; 20(8):085204. PubMed ID: 19417444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance properties of single elongated nano-objects: gold nanobipyramids and nanorods.
    Lombardi A; Loumaigne M; Crut A; Maioli P; Del Fatti N; Vallée F; Spuch-Calvar M; Burgin J; Majimel J; Tréguer-Delapierre M
    Langmuir; 2012 Jun; 28(24):9027-33. PubMed ID: 22369067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoring trimers: a versatile structure for infrared sensing.
    Teo SL; Lin VK; Marty R; Large N; Llado EA; Arbouet A; Girard C; Aizpurua J; Tripathy S; Mlayah A
    Opt Express; 2010 Oct; 18(21):22271-82. PubMed ID: 20941128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation.
    Zook JM; Rastogi V; Maccuspie RI; Keene AM; Fagan J
    ACS Nano; 2011 Oct; 5(10):8070-9. PubMed ID: 21888410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How gold nanoparticles have stayed in the light: the 3M's principle.
    Odom TW; Nehl CL
    ACS Nano; 2008 Apr; 2(4):612-6. PubMed ID: 19206589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic detection of a model analyte in serum by a gold nanorod sensor.
    Marinakos SM; Chen S; Chilkoti A
    Anal Chem; 2007 Jul; 79(14):5278-83. PubMed ID: 17567106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance.
    Li X; Tamada K; Baba A; Knoll W; Hara M
    J Phys Chem B; 2006 Aug; 110(32):15755-62. PubMed ID: 16898722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors.
    Mahmoud MA; El-Sayed MA
    J Am Chem Soc; 2010 Sep; 132(36):12704-10. PubMed ID: 20722373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods.
    Huang H; Tang C; Zeng Y; Yu X; Liao B; Xia X; Yi P; Chu PK
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):96-101. PubMed ID: 19211228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods.
    Mayer KM; Lee S; Liao H; Rostro BC; Fuentes A; Scully PT; Nehl CL; Hafner JH
    ACS Nano; 2008 Apr; 2(4):687-92. PubMed ID: 19206599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective growth of vertical ZnO nanowire arrays using chemically anchored gold nanoparticles.
    Ito D; Jespersen ML; Hutchison JE
    ACS Nano; 2008 Oct; 2(10):2001-6. PubMed ID: 19206444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle plasmon resonances in L-shaped gold nanoparticles.
    Husu H; Mäkitalo J; Laukkanen J; Kuittinen M; Kauranen M
    Opt Express; 2010 Aug; 18(16):16601-6. PubMed ID: 20721051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.