BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21178248)

  • 1. Design and implementation of a novel superfusion system for ex vivo characterization of neural tissue by dielectric spectroscopy (DS).
    Dobiszewski KF; Shaker MR; Deek MP; Prodan C; Hill AA
    Physiol Meas; 2011 Feb; 32(2):195-205. PubMed ID: 21178248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular fluid conductivity analysis by dielectric spectroscopy for in vitro determination of cortical tissue vitality.
    Dobiszewski KF; Deek MP; Ghaly A; Prodan C; Hill AA
    Physiol Meas; 2012 Jul; 33(7):1249-60. PubMed ID: 22735505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopy.
    Pliquett U; Schönfeldt M; Barthel A; Frense D; Nacke T; Beckmann D
    Physiol Meas; 2011 Jul; 32(7):927-44. PubMed ID: 21646715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental verification of depolarization effects in bioelectrical impedance measurement.
    Chen X; Lv X; Du M
    Biomed Mater Eng; 2014; 24(6):3675-83. PubMed ID: 25227082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction of electrode polarization contributions to the dielectric properties of normal and cancerous breast tissues at audio/radiofrequencies.
    Stoneman MR; Kosempa M; Gregory WD; Gregory CW; Marx JJ; Mikkelson W; Tjoe J; Raicu V
    Phys Med Biol; 2007 Nov; 52(22):6589-604. PubMed ID: 17975285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe.
    O'Rourke AP; Lazebnik M; Bertram JM; Converse MC; Hagness SC; Webster JG; Mahvi DM
    Phys Med Biol; 2007 Aug; 52(15):4707-19. PubMed ID: 17634659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional dielectric spectroscopy: implementation and validation of a scanning open-ended coaxial probe.
    Habibi M; Klemer DP; Raicu V
    Rev Sci Instrum; 2010 Jul; 81(7):075108. PubMed ID: 20687760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy.
    Opel CF; Li J; Amanullah A
    Biotechnol Prog; 2010; 26(4):1187-99. PubMed ID: 20730773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process control in cell culture technology using dielectric spectroscopy.
    Justice C; Brix A; Freimark D; Kraume M; Pfromm P; Eichenmueller B; Czermak P
    Biotechnol Adv; 2011; 29(4):391-401. PubMed ID: 21419837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo O2 measurement inside single photosynthetic cells.
    Bai SJ; Ryu W; Fasching RJ; Grossman AR; Prinz FB
    Biotechnol Lett; 2011 Aug; 33(8):1675-81. PubMed ID: 21476096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Feasibility of a Smart Surgical Probe for Verification of IRE Treatments Using Electrical Impedance Spectroscopy.
    Bonakdar M; Latouche EL; Mahajan RL; Davalos RV
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2674-84. PubMed ID: 26057529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online tissue discrimination for transcutaneous needle guidance applications using broadband impedance spectroscopy.
    Trebbels D; Fellhauer F; Jugl M; Haimerl G; Min M; Zengerle R
    IEEE Trans Biomed Eng; 2012 Feb; 59(2):494-503. PubMed ID: 22084037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved detection limits of toxic biochemical species based on impedance measurements in electrochemical biosensors.
    Narakathu BB; Atashbar MZ; Bejcek BE
    Biosens Bioelectron; 2010 Oct; 26(2):923-8. PubMed ID: 20655726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impedance spectroscopy of conductive commercial hydrogels for electromyography and electroencephalography.
    Freire FC; Becchi M; Ponti S; Miraldi E; Strigazzi A
    Physiol Meas; 2010 Oct; 31(10):S157-67. PubMed ID: 20834111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a complex bioimpedance spectrometer using DFT and undersampling for neural networks diagnostics.
    do Amaral CE; Lopes HS; Arruda LV; Hara MS; Gonçalves AJ; Dias AA
    Med Eng Phys; 2011 Apr; 33(3):356-61. PubMed ID: 21146438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A system for precise temperature control of isolated nervous tissue under optical access: application to multi-electrode recordings.
    Ahlers MT; Ammermüller J
    J Neurosci Methods; 2013 Sep; 219(1):83-91. PubMed ID: 23835008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impedance sensor technology for cell-based assays in the framework of a high-content screening system.
    Schwarzenberger T; Wolf P; Brischwein M; Kleinhans R; Demmel F; Lechner A; Becker B; Wolf B
    Physiol Meas; 2011 Jul; 32(7):977-93. PubMed ID: 21646704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric properties of EVA rubber composites at microwave frequencies theory, instrumentation and measurements.
    Banerjee P; Biswas SK; Ghosh G
    J Microw Power Electromagn Energy; 2011; 45(1):24-9. PubMed ID: 24427870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D numerical simulation of a lab-on-a-chip--increasing measurement sensitivity of interdigitated capacitors by passivation optimization.
    Jungreuthmayer C; Birnbaumer GM; Zanghellini J; Ertl P
    Lab Chip; 2011 Apr; 11(7):1318-25. PubMed ID: 21331426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemiresistors based on conducting polymers: a review on measurement techniques.
    Lange U; Mirsky VM
    Anal Chim Acta; 2011 Feb; 687(2):105-13. PubMed ID: 21277412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.