These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21178251)

  • 1. Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback.
    Buividas R; Rosa L; Sliupas R; Kudrius T; Slekys G; Datsyuk V; Juodkazis S
    Nanotechnology; 2011 Feb; 22(5):055304. PubMed ID: 21178251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of femtosecond-laser induced nanostructures in optical memory.
    Shimotsuma Y; Sakakura M; Miura K; Qiu J; Kazansky PG; Fujita K; Hirao K
    J Nanosci Nanotechnol; 2007 Jan; 7(1):94-104. PubMed ID: 17455477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periodic nanostructures on Si(100) surfaces generated by high-repetition rate sub-15 fs pulsed near-infrared laser light.
    Straub M; Afshar M; Feili D; Seidel H; König K
    Opt Lett; 2012 Jan; 37(2):190-2. PubMed ID: 22854463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses.
    Jia X; Jia TQ; Zhang Y; Xiong PX; Feng DH; Sun ZR; Qiu JR; Xu ZZ
    Opt Lett; 2010 Apr; 35(8):1248-50. PubMed ID: 20410982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses.
    Obara G; Shimizu H; Enami T; Mazur E; Terakawa M; Obara M
    Opt Express; 2013 Nov; 21(22):26323-34. PubMed ID: 24216855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organized periodic structures on Ge-S based chalcogenide glass induced by femtosecond laser irradiation.
    Messaddeq SH; Vallée R; Soucy P; Bernier M; El-Amraoui M; Messaddeq Y
    Opt Express; 2012 Dec; 20(28):29882-9. PubMed ID: 23388814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular dynamics simulation of ion-induced ripple growth.
    Süle P; Heinig KH
    J Chem Phys; 2009 Nov; 131(20):204704. PubMed ID: 19947701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate.
    Le Harzic R; Dörr D; Sauer D; Neumeier M; Epple M; Zimmermann H; Stracke F
    Opt Lett; 2011 Jan; 36(2):229-31. PubMed ID: 21263509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended-area nanostructuring of TiO2 with femtosecond laser pulses at 400 nm using a line focus.
    Das SK; Dasari K; Rosenfeld A; Grunwald R
    Nanotechnology; 2010 Apr; 21(15):155302. PubMed ID: 20299729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization dependent ripples induced by femtosecond laser on dense flint (ZF6) glass.
    Han Y; Zhao X; Qu S
    Opt Express; 2011 Sep; 19(20):19150-5. PubMed ID: 21996857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recording, erasing, and rewriting of ripples on metal surfaces by ultrashort laser pulses.
    Lou K; Qian J; Shen D; Wang H; Ding T; Wang G; Dai Y; Zhao QZ
    Opt Lett; 2018 Apr; 43(8):1778-1781. PubMed ID: 29652362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains.
    Jiang L; Shi X; Li X; Yuan Y; Wang C; Lu Y
    Opt Express; 2012 Sep; 20(19):21505-11. PubMed ID: 23037270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of laser-induced micro/nanostructures for femtosecond laser irradiation of silicon.
    Deng G; Feng G; Liu K; Zhou S
    Appl Opt; 2014 May; 53(14):3004-9. PubMed ID: 24922019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of femtosecond laser induced ripple formation on copper for varying incident angle.
    Zuhlke CA; Tsibidis GD; Anderson T; Stratakis E; Gogos G; Alexander DR
    AIP Adv; 2018; 8(1):015212. PubMed ID: 30416867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-wavelength ripples in fused silica after irradiation of the solid/liquid interface with ultrashort laser pulses.
    Böhme R; Vass C; Hopp B; Zimmer K
    Nanotechnology; 2008 Dec; 19(49):495301. PubMed ID: 21730665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses.
    Zhao QZ; Malzer S; Wang LJ
    Opt Lett; 2007 Jul; 32(13):1932-4. PubMed ID: 17603618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser.
    Huang M; Zhao F; Cheng Y; Xu N; Xu Z
    ACS Nano; 2009 Dec; 3(12):4062-70. PubMed ID: 20025303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of Slantwise Surface Ripples by Femtosecond Laser Irradiation.
    Zheng X; Cong C; Lei Y; Yang J; Guo C
    Nanomaterials (Basel); 2018 Jun; 8(7):. PubMed ID: 29932140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical absorption and photocurrent enhancement in semi-insulating gallium arsenide by femtosecond laser pulse surface microstructuring.
    Zhao ZY; Song ZQ; Shi WZ; Zhao QZ
    Opt Express; 2014 May; 22(10):11654-9. PubMed ID: 24921287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.