BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21179190)

  • 1. Accurate protein structure annotation through competitive diffusion of enzymatic functions over a network of local evolutionary similarities.
    Venner E; Lisewski AM; Erdin S; Ward RM; Amin SR; Lichtarge O
    PLoS One; 2010 Dec; 5(12):e14286. PubMed ID: 21179190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary trace annotation of protein function in the structural proteome.
    Erdin S; Ward RM; Venner E; Lichtarge O
    J Mol Biol; 2010 Mar; 396(5):1451-73. PubMed ID: 20036248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary Trace Annotation Server: automated enzyme function prediction in protein structures using 3D templates.
    Ward RM; Venner E; Daines B; Murray S; Erdin S; Kristensen DM; Lichtarge O
    Bioinformatics; 2009 Jun; 25(11):1426-7. PubMed ID: 19307237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ETAscape: analyzing protein networks to predict enzymatic function and substrates in Cytoscape.
    Bachman BJ; Venner E; Lua RC; Erdin S; Lichtarge O
    Bioinformatics; 2012 Aug; 28(16):2186-8. PubMed ID: 22689386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids.
    Kristensen DM; Ward RM; Lisewski AM; Erdin S; Chen BY; Fofanov VY; Kimmel M; Kavraki LE; Lichtarge O
    BMC Bioinformatics; 2008 Jan; 9():17. PubMed ID: 18190718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function prediction from networks of local evolutionary similarity in protein structure.
    Erdin S; Venner E; Lisewski AM; Lichtarge O
    BMC Bioinformatics; 2013; 14 Suppl 3(Suppl 3):S6. PubMed ID: 23514548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De-orphaning the structural proteome through reciprocal comparison of evolutionarily important structural features.
    Ward RM; Erdin S; Tran TA; Kristensen DM; Lisewski AM; Lichtarge O
    PLoS One; 2008 May; 3(5):e2136. PubMed ID: 18461181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction and experimental validation of enzyme substrate specificity in protein structures.
    Amin SR; Erdin S; Ward RM; Lua RC; Lichtarge O
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):E4195-202. PubMed ID: 24145433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-organism learning method to discover new gene functionalities.
    Domeniconi G; Masseroli M; Moro G; Pinoli P
    Comput Methods Programs Biomed; 2016 Apr; 126():20-34. PubMed ID: 26724853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistically rigorous automated protein annotation.
    Krebs WG; Bourne PE
    Bioinformatics; 2004 May; 20(7):1066-73. PubMed ID: 14764575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AVID: an integrative framework for discovering functional relationships among proteins.
    Jiang T; Keating AE
    BMC Bioinformatics; 2005 Jun; 6():136. PubMed ID: 15929793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolving protein structure-function-binding site relationships from a binding site similarity network perspective.
    Mudgal R; Srinivasan N; Chandra N
    Proteins; 2017 Jul; 85(7):1319-1335. PubMed ID: 28342236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assigning new GO annotations to protein data bank sequences by combining structure and sequence homology.
    Ponomarenko JV; Bourne PE; Shindyalov IN
    Proteins; 2005 Mar; 58(4):855-65. PubMed ID: 15645518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps.
    Nabieva E; Jim K; Agarwal A; Chazelle B; Singh M
    Bioinformatics; 2005 Jun; 21 Suppl 1():i302-10. PubMed ID: 15961472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target space for structural genomics revisited.
    Liu J; Rost B
    Bioinformatics; 2002 Jul; 18(7):922-33. PubMed ID: 12117789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FLORA: a novel method to predict protein function from structure in diverse superfamilies.
    Redfern OC; Dessailly BH; Dallman TJ; Sillitoe I; Orengo CA
    PLoS Comput Biol; 2009 Aug; 5(8):e1000485. PubMed ID: 19714201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of the impact of PSI:Biology according to the annotations of the determined structures.
    DePietro PJ; Julfayev ES; McLaughlin WA
    BMC Struct Biol; 2013 Oct; 13():24. PubMed ID: 24139526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures.
    Lua RC; Wilson SJ; Konecki DM; Wilkins AD; Venner E; Morgan DH; Lichtarge O
    Nucleic Acids Res; 2016 Jan; 44(D1):D308-12. PubMed ID: 26590254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ELISA: structure-function inferences based on statistically significant and evolutionarily inspired observations.
    Shakhnovich BE; Harvey JM; Comeau S; Lorenz D; DeLisi C; Shakhnovich E
    BMC Bioinformatics; 2003 Sep; 4():34. PubMed ID: 12952559
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.