These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21179207)

  • 1. FYVE-dependent endosomal targeting of an arrestin-related protein in amoeba.
    Guetta D; Langou K; Grunwald D; Klein G; Aubry L
    PLoS One; 2010 Dec; 5(12):e15249. PubMed ID: 21179207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. True arrestins and arrestin-fold proteins: a structure-based appraisal.
    Aubry L; Klein G
    Prog Mol Biol Transl Sci; 2013; 118():21-56. PubMed ID: 23764049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium influx mediates the chemoattractant-induced translocation of the arrestin-related protein AdcC in
    Mas L; Cieren A; Delphin C; Journet A; Aubry L
    J Cell Sci; 2018 Oct; 131(19):. PubMed ID: 30209138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The arrestin fold: variations on a theme.
    Aubry L; Guetta D; Klein G
    Curr Genomics; 2009 Apr; 10(2):133-42. PubMed ID: 19794886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain.
    Shi H; Rojas R; Bonifacino JS; Hurley JH
    Nat Struct Mol Biol; 2006 Jun; 13(6):540-8. PubMed ID: 16732284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The arrestin-domain containing protein AdcA is a response element to stress.
    Habourdin C; Klein G; Araki T; Williams JG; Aubry L
    Cell Commun Signal; 2013 Nov; 11():91. PubMed ID: 24267687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of cone arrestin at 2.3A: evolution of receptor specificity.
    Sutton RB; Vishnivetskiy SA; Robert J; Hanson SM; Raman D; Knox BE; Kono M; Navarro J; Gurevich VV
    J Mol Biol; 2005 Dec; 354(5):1069-80. PubMed ID: 16289201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the origins of arrestin and rhodopsin.
    Alvarez CE
    BMC Evol Biol; 2008 Jul; 8():222. PubMed ID: 18664266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular basis of the differential subcellular localization of FYVE domains.
    Blatner NR; Stahelin RV; Diraviyam K; Hawkins PT; Hong W; Murray D; Cho W
    J Biol Chem; 2004 Dec; 279(51):53818-27. PubMed ID: 15452113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for endosomal targeting by FYVE domains.
    Hayakawa A; Hayes SJ; Lawe DC; Sudharshan E; Tuft R; Fogarty K; Lambright D; Corvera S
    J Biol Chem; 2004 Feb; 279(7):5958-66. PubMed ID: 14594806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis*.
    Oakley RH; Laporte SA; Holt JA; Barak LS; Caron MG
    J Biol Chem; 2001 Jun; 276(22):19452-60. PubMed ID: 11279203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes.
    Shenoy SK; Lefkowitz RJ
    J Biol Chem; 2005 Apr; 280(15):15315-24. PubMed ID: 15699045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis.
    Ge L; Ly Y; Hollenberg M; DeFea K
    J Biol Chem; 2003 Sep; 278(36):34418-26. PubMed ID: 12821670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor.
    Shenoy SK; Drake MT; Nelson CD; Houtz DA; Xiao K; Madabushi S; Reiter E; Premont RT; Lichtarge O; Lefkowitz RJ
    J Biol Chem; 2006 Jan; 281(2):1261-73. PubMed ID: 16280323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential beta-arrestin trafficking and endosomal sorting of somatostatin receptor subtypes.
    Tulipano G; Stumm R; Pfeiffer M; Kreienkamp HJ; Höllt V; Schulz S
    J Biol Chem; 2004 May; 279(20):21374-82. PubMed ID: 15001578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agonist-induced internalization of the platelet-activating factor receptor is dependent on arrestins but independent of G-protein activation. Role of the C terminus and the (D/N)PXXY motif.
    Chen Z; Dupré DJ; Le Gouill C; Rola-Pleszczynski M; Stanková J
    J Biol Chem; 2002 Mar; 277(9):7356-62. PubMed ID: 11729201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intracellular loop 2 amino acid residue determines differential binding of arrestin to the dopamine D2 and D3 receptors.
    Lan H; Teeter MM; Gurevich VV; Neve KA
    Mol Pharmacol; 2009 Jan; 75(1):19-26. PubMed ID: 18820126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation-independent beta-arrestin translocation and internalization of leukotriene B4 receptors.
    Jala VR; Shao WH; Haribabu B
    J Biol Chem; 2005 Feb; 280(6):4880-7. PubMed ID: 15561704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of the third intracellular loop of the 5-hydroxytryptamine2A receptor: the third intracellular loop is alpha-helical and binds purified arrestins.
    Gelber EI; Kroeze WK; Willins DL; Gray JA; Sinar CA; Hyde EG; Gurevich V; Benovic J; Roth BL
    J Neurochem; 1999 May; 72(5):2206-14. PubMed ID: 10217304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of interaction sites.
    Song X; Gurevich EV; Gurevich VV
    J Neurochem; 2007 Nov; 103(3):1053-62. PubMed ID: 17680991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.