BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 21179234)

  • 1. Adipose-derived stem cells differentiate to keratocytes in vitro.
    Du Y; Roh DS; Funderburgh ML; Mann MM; Marra KG; Rubin JP; Li X; Funderburgh JL
    Mol Vis; 2010 Dec; 16():2680-9. PubMed ID: 21179234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of growth factor supplementation on corneal stromal cell phenotype in vitro using a serum-free media.
    Lynch AP; O'Sullivan F; Ahearne M
    Exp Eye Res; 2016 Oct; 151():26-37. PubMed ID: 27456135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial restoration of the keratocyte phenotype to bovine keratocytes made fibroblastic by serum.
    Berryhill BL; Kader R; Kane B; Birk DE; Feng J; Hassell JR
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3416-21. PubMed ID: 12407151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma.
    Du Y; Sundarraj N; Funderburgh ML; Harvey SA; Birk DE; Funderburgh JL
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5038-45. PubMed ID: 17962455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human mesenchymal stem cells differentiate into keratocyte-like cells in keratocyte-conditioned medium.
    Park SH; Kim KW; Chun YS; Kim JC
    Exp Eye Res; 2012 Aug; 101():16-26. PubMed ID: 22683947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype.
    Chan AA; Hertsenberg AJ; Funderburgh ML; Mann MM; Du Y; Davoli KA; Mich-Basso JD; Yang L; Funderburgh JL
    PLoS One; 2013; 8(2):e56831. PubMed ID: 23437251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Keratocyte phenotype is enhanced in the absence of attachment to the substratum.
    Funderburgh ML; Mann MM; Funderburgh JL
    Mol Vis; 2008 Feb; 14():308-17. PubMed ID: 18334944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of alpha3(IV) collagen expression associated with corneal keratocyte activation.
    Guerriero E; Chen J; Sado Y; Mohan RR; Wilson SE; Funderburgh JL; Sundarraj N
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):627-35. PubMed ID: 17251459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multipotent stem cells in human corneal stroma.
    Du Y; Funderburgh ML; Mann MM; SundarRaj N; Funderburgh JL
    Stem Cells; 2005 Oct; 23(9):1266-75. PubMed ID: 16051989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corneal stromal stem cells versus corneal fibroblasts in generating structurally appropriate corneal stromal tissue.
    Wu J; Du Y; Mann MM; Funderburgh JL; Wagner WR
    Exp Eye Res; 2014 Mar; 120():71-81. PubMed ID: 24440595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PAX6 expression identifies progenitor cells for corneal keratocytes.
    Funderburgh ML; Du Y; Mann MM; SundarRaj N; Funderburgh JL
    FASEB J; 2005 Aug; 19(10):1371-3. PubMed ID: 15901670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corneal keratocyte transition to mesenchymal stem cell phenotype and reversal using serum-free medium supplemented with fibroblast growth factor-2, transforming growth factor-β3 and retinoic acid.
    Sidney LE; Hopkinson A
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e203-e215. PubMed ID: 27685949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preservation and expansion of the primate keratocyte phenotype by downregulating TGF-beta signaling in a low-calcium, serum-free medium.
    Kawakita T; Espana EM; He H; Smiddy R; Parel JM; Liu CY; Tseng SC
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):1918-27. PubMed ID: 16638999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteoglycan synthesis by bovine keratocytes and corneal fibroblasts: maintenance of the keratocyte phenotype in culture.
    Beales MP; Funderburgh JL; Jester JV; Hassell JR
    Invest Ophthalmol Vis Sci; 1999 Jul; 40(8):1658-63. PubMed ID: 10393032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aldehyde dehydrogenase (ALDH) 3A1 expression by the human keratocyte and its repair phenotypes.
    Pei Y; Reins RY; McDermott AM
    Exp Eye Res; 2006 Nov; 83(5):1063-73. PubMed ID: 16822507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adipose-derived stem cells on hyaluronic acid-derived scaffold: a new horizon in bioengineered cornea.
    Espandar L; Bunnell B; Wang GY; Gregory P; McBride C; Moshirfar M
    Arch Ophthalmol; 2012 Feb; 130(2):202-8. PubMed ID: 22332213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical stress potentiates the differentiation of periodontal ligament stem cells into keratocytes.
    Chen J; Zhang W; Backman LJ; Kelk P; Danielson P
    Br J Ophthalmol; 2018 Apr; 102(4):562-569. PubMed ID: 29306866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea.
    Ghoubay-Benallaoua D; de Sousa C; Martos R; Latour G; Schanne-Klein MC; Dupin E; Borderie V
    PLoS One; 2017; 12(11):e0188398. PubMed ID: 29149196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture.
    Ghezzi CE; Marelli B; Omenetto FG; Funderburgh JL; Kaplan DL
    PLoS One; 2017; 12(1):e0169504. PubMed ID: 28099503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphere formation from corneal keratocytes and phenotype specific markers.
    Scott SG; Jun AS; Chakravarti S
    Exp Eye Res; 2011 Dec; 93(6):898-905. PubMed ID: 22032988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.