BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21179519)

  • 1. New microsatellite markers for examining genetic variation in peripheral and core populations of the Coastal Giant Salamander (Dicamptodon tenebrosus).
    Dudaniec RY; Storfer A; Spear SF; Richardson JS
    PLoS One; 2010 Dec; 5(12):e14333. PubMed ID: 21179519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations.
    Dudaniec RY; Spear SF; Richardson JS; Storfer A
    PLoS One; 2012; 7(5):e36769. PubMed ID: 22590604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Landscape connectivity among coastal giant salamander (Dicamptodon tenebrosus) populations shows no association with land use, fire frequency, or river drainage but exhibits genetic signatures of potential conservation concern.
    Auteri GG; Marchán-Rivadeneira MR; Olson DH; Knowles LL
    PLoS One; 2022; 17(6):e0268882. PubMed ID: 35675274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of microsatellite loci in the Pacific giant salamander Dicamptodon tenebrosus.
    Curtis JM; Taylor EB
    Mol Ecol; 2000 Jan; 9(1):116-8. PubMed ID: 10652085
    [No Abstract]   [Full Text] [Related]  

  • 5. Influence of life-history variation on the genetic structure of two sympatric salamander taxa.
    Steele CA; Baumsteiger J; Storfer A
    Mol Ecol; 2009 Apr; 18(8):1629-39. PubMed ID: 19302353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymorphic tetranucleotide microsatellites for Cope's giant salamander (Dicamptodon copei) and Pacific giant salamander (Dicamptodon tenebrosus).
    Steele CA; Baumsteiger J; Storfer A
    Mol Ecol Resour; 2008 Sep; 8(5):1071-3. PubMed ID: 21585975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rangewide landscape genetics of an endemic Pacific northwestern salamander.
    Trumbo DR; Spear SF; Baumsteiger J; Storfer A
    Mol Ecol; 2013 Mar; 22(5):1250-66. PubMed ID: 23293948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and evolution of supernumerary chromosomes in the Pacific giant salamander, Dicamptodon tenebrosus.
    Brinkman JN; Sessions SK; Houben A; Green DM
    Chromosome Res; 2000; 8(6):477-85. PubMed ID: 11032318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Genetic diversity of microsatellite loci in captive Amur tigers].
    Zhang YG; Li DQ; Xiao QM; Rao LQ; Zhang XW
    Yi Chuan; 2004 Sep; 26(5):620-4. PubMed ID: 15640074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of polymorphic microsatellite markers for Conopholis americana (Orobanchaceae).
    Rodrigues AG; Colwell AE; Stefanovic S
    Am J Bot; 2012 Jan; 99(1):e4-6. PubMed ID: 22186185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of intra and interregional genetic variation in the Eastern Red-backed Salamander, Plethodon cinereus, via analysis of novel microsatellite markers.
    Cameron AC; Anderson JJ; Page RB
    PLoS One; 2017; 12(10):e0186866. PubMed ID: 29053730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic variation of Avicennia marina (Forsk.) Vierh. (Avicenniaceae) in Vietnam revealed by microsatellite and AFLP markers.
    Giang le H; Hong PN; Tuan MS; Harada K
    Genes Genet Syst; 2003 Dec; 78(6):399-407. PubMed ID: 14973341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and cross application of novel microsatellite markers for a rare sedge, Lepidosperma gibsonii (Cyperaceae).
    Barrett MD; Wallace MJ; Anthony JM
    Am J Bot; 2012 Jan; 99(1):e14-6. PubMed ID: 22203656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genetic diversity of the noble scallop (Chlamys nobilis, Reeve 1852) in China assessed using five microsatellite markers.
    Wang Y; Fu D; Xia J
    Mar Genomics; 2013 Mar; 9():63-7. PubMed ID: 23904061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limited usefulness of microsatellite markers from the malaria vector Anopheles gambiae when applied to the closely related species Anopheles melas.
    Deitz KC; Reddy VP; Reddy MR; Satyanarayanah N; Lindsey MW; Overgaard HJ; Jawara M; Caccone A; Slotman MA
    J Hered; 2012 Jul; 103(4):585-93. PubMed ID: 22593601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsatellite marker analysis reveals the distinction between the north and south groups of hard clam (Meretrix meretrix) in China.
    Gu XF; Dong YH; Yao HH; Zhou XL; Qi XY; Lin ZH
    Genet Mol Res; 2015 Feb; 14(1):1210-9. PubMed ID: 25730059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on population genetic structure of Liangshan semi-wool sheep using microsatellite markers.
    Zhang XY; Zhou ML; Zhang XH; Wu DJ
    Pak J Biol Sci; 2008 Oct; 11(20):2423-7. PubMed ID: 19137853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel polymorphic microsatellite DNA markers from Malaysian giant freshwater prawn, Macrobrachium rosenbergii.
    See LM; Hassan R; Tan SG; Bhassu S
    Genetika; 2011 Apr; 47(4):566-9. PubMed ID: 21675248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogeographical lineages of Arctic grayling (Thymallus arcticus) in North America: divergence, origins and affinities with Eurasian Thymallus.
    Stamford MD; Taylor EB
    Mol Ecol; 2004 Jun; 13(6):1533-49. PubMed ID: 15140096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic diversity of microsatellite loci in Leopardus pardalis, Leopardus wiedii and Leopardus tigrinus.
    Grisolia AB; Moreno VR; Campagnari F; Milazzotto MP; Garcia JF; Adania CH; Souza EB
    Genet Mol Res; 2007 Jun; 6(2):382-9. PubMed ID: 17624861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.