These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21179713)

  • 1. [The research progress on microelectrode array (MEA) of retinal prosthesis].
    Li T; Cao Z; Sui X; Jiang X; Ren Q; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2010 Sep; 34(5):355-9. PubMed ID: 21179713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The research on high-density flexible microelectrode array of retinal prosthesis based on MEMS technology].
    Feng G; Sui X; Wang Y; Li G; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Nov; 37(6):407-10. PubMed ID: 24617208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A discussion about key issues in retinal prosthesis].
    Peng C; Xia L; Wang X; Zheng E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Jun; 26(3):671-5. PubMed ID: 19634695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The research on multi-layer flexible microelectrode arrays of epiretinal prosthesis].
    Cao Z; Li T; Sui X; Li G; Ren Q; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2010 Nov; 34(6):399-402. PubMed ID: 21360973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.
    Lee S; Ahn JH; Seo JM; Chung H; Cho DI
    Sensors (Basel); 2015 Jun; 15(6):14345-55. PubMed ID: 26091397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implantable nanostructured MEA with biphasic current stimulator for retinal prostheses.
    Han S; Kim C; Kim K; Lee S
    Technol Health Care; 2023; 31(5):1981-1995. PubMed ID: 36872814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel in vitro sensing configuration for retinal physiology analysis of a sub-retinal prosthesis.
    Koo KI; Lee S; Yee JH; Ryu SB; Kim KH; Goo YS; Cho DI
    Sensors (Basel); 2012; 12(3):3131-44. PubMed ID: 22736997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-density microelectrode-tissue-microelectrode sandwich platform for application of retinal circuit study.
    Yang F; Yang CH; Wang FM; Cheng YT; Teng CC; Lee LJ; Yang CH; Fan LS
    Biomed Eng Online; 2015 Nov; 14():109. PubMed ID: 26611649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Advanced research in the retinal prosthesis].
    Zou YY; Wang JT; Li XR
    Zhonghua Yan Ke Za Zhi; 2009 Nov; 45(11):1052-4. PubMed ID: 20137426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Three-Dimensional Microelectrode Array to Generate Virtual Electrodes for Epiretinal Prosthesis Based on a Modeling Study.
    Lyu Q; Lu Z; Li H; Qiu S; Guo J; Sui X; Sun P; Li L; Chai X; Lovell NH
    Int J Neural Syst; 2020 Mar; 30(3):2050006. PubMed ID: 32116093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit.
    Yamauchi Y; Franco LM; Jackson DJ; Naber JF; Ziv RO; Rizzo JF; Kaplan HJ; Enzmann V
    J Neural Eng; 2005 Mar; 2(1):S48-56. PubMed ID: 15876654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical characteristics of 2D and 3D microelectrodes for high-resolution retinal prostheses.
    Lee S; Ahn J; Yoo H; Jung S; Oh S; Park S; Cho D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3535-8. PubMed ID: 24110492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot-assisted implantation of a microelectrode array in the occipital lobe as a visual prosthesis: technical note.
    Rocca A; Lehner C; Wafula-Wekesa E; Luna E; Fernández-Cornejo V; Abarca-Olivas J; Soto-Sánchez C; Fernández-Jover E; González-López P
    J Neurosurg; 2024 Apr; 140(4):1169-1176. PubMed ID: 37890180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in the development of vision prostheses.
    Matthaei M; Zeitz O; Keserü M; Wagenfeld L; Hornig R; Post N; Richard G
    Ophthalmologica; 2011; 225(4):187-92. PubMed ID: 21293161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of microelectrode array (MEA) based on silicone-polyimide hybrid for retina prosthesis.
    Kim ET; Kim C; Lee SW; Seo JM; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4337-41. PubMed ID: 19264890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Design and optimization of wireless power and data transmission for visual prosthesis].
    Lei X; Wu K; Zhao L; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Nov; 37(6):427-31. PubMed ID: 24617214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current research of C-Sight visual prosthesis for the blind.
    Wu KJ; Zhang C; Huang WC; Li LM; Ren QS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5875-8. PubMed ID: 21096928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The development and challenge of vision prosthesis].
    Chen PP; Lv XQ; Shi JR; Zhao J; Chai XY; Ren QS
    Zhongguo Yi Liao Qi Xie Za Zhi; 2009 Jul; 33(4):276-81. PubMed ID: 19938527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optoelectronic retinal prosthesis: system design and performance.
    Loudin JD; Simanovskii DM; Vijayraghavan K; Sramek CK; Butterwick AF; Huie P; McLean GY; Palanker DV
    J Neural Eng; 2007 Mar; 4(1):S72-84. PubMed ID: 17325419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current and future prospects for optoelectronic retinal prostheses.
    Dowling J
    Eye (Lond); 2009 Oct; 23(10):1999-2005. PubMed ID: 19098703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.