BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21179956)

  • 1. Mercury in some chemical fertilizers and the effect of calcium superphosphate on mercury uptake by corn seedlings (Zea mays L.).
    Zhao X; Wang D
    J Environ Sci (China); 2010; 22(8):1184-8. PubMed ID: 21179956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment.
    Tang Z; Fan F; Wang X; Shi X; Deng S; Wang D
    Ecotoxicol Environ Saf; 2018 Apr; 150():116-122. PubMed ID: 29272715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of sewage irrigation on the uptake of mercury in corn plants (Zea mays) from suburban Beijing.
    Rothenberg SE; Du X; Zhu YG; Jay JA
    Environ Pollut; 2007 Sep; 149(2):246-51. PubMed ID: 17442470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus fertilization regimes and rates alter Cd extractability in rhizospheric soils and uptake in maize (Zea mays L.).
    Wang Y; Peng X; Lai L; Li H; Zhang X; Chen H; Xie L
    Chemosphere; 2022 Jul; 298():134288. PubMed ID: 35283148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.).
    Carbonell G; de Imperial RM; Torrijos M; Delgado M; Rodriguez JA
    Chemosphere; 2011 Nov; 85(10):1614-23. PubMed ID: 21908014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral insight into thiosulfate-induced mercury speciation transformation in a historically polluted soil.
    Liu T; Wang J; Feng X; Zhang H; Zhu Z; Cheng S
    Sci Total Environ; 2019 Mar; 657():938-944. PubMed ID: 30677959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of Nonprotein Thiols to Stress of Vanadium and Mercury in Maize (Zea mays L.) Seedlings.
    Hou M; Li M; Yang X; Pan R
    Bull Environ Contam Toxicol; 2019 Mar; 102(3):425-431. PubMed ID: 30683955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corn (Zea mays L.): A low methylmercury staple cereal source and an important biospheric sink of atmospheric mercury, and health risk assessment.
    Sun G; Feng X; Yin R; Zhao H; Zhang L; Sommar J; Li Z; Zhang H
    Environ Int; 2019 Oct; 131():104971. PubMed ID: 31284107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the influence of selenite (Se
    Tran TAT; Dinh QT; Cui Z; Huang J; Wang D; Wei T; Liang D; Sun X; Ning P
    Ecotoxicol Environ Saf; 2018 Jan; 147():897-904. PubMed ID: 28968942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of the effects of different chelating ligands on the absorption and transport of mercury in maize (Zea mays L.).
    Li Y; Guan J; Zhao J; Li B; Li YF; Gao Y
    Ecotoxicol Environ Saf; 2020 Jan; 188():109897. PubMed ID: 31704327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of clinoptilolite zeolite on phosphorus dynamics and yield of Zea Mays L. cultivated on an acid soil.
    Nur Aainaa H; Haruna Ahmed O; Ab Majid NM
    PLoS One; 2018; 13(9):e0204401. PubMed ID: 30261005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of nitrogen responses of corn by soil nitrogen mineralization indicators.
    Simard RR; Ziadi N; Nolin MC; Cambouris AN
    ScientificWorldJournal; 2001 Nov; 1 Suppl 2():135-41. PubMed ID: 12805786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey.
    Sasmaz M; Akgül B; Yıldırım D; Sasmaz A
    Int J Phytoremediation; 2016; 18(1):69-76. PubMed ID: 26114359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure.
    Wu W; Wu J; Liu X; Chen X; Wu Y; Yu S
    Ecotoxicol Environ Saf; 2017 Sep; 143():322-329. PubMed ID: 28578263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of different forms of P fertilizers on phytoremediation for As-contaminated soils using As-hyperaccumulator Pteris vittata L].
    Liao XY; Chen TB; Yan XL; Xie H; Xiao XY; Zhai LM
    Huan Jing Ke Xue; 2008 Oct; 29(10):2906-11. PubMed ID: 19143393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of white lupin in the removal of mercury from contaminated soils: soil and hydroponic experiments.
    Zornoza P; Millán R; Sierra MJ; Seco A; Esteban E
    J Environ Sci (China); 2010; 22(3):421-7. PubMed ID: 20614785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of long-term fertilization on the diversity of bacterial mercuric reductase gene in a Chinese upland soil.
    Liu YR; He JZ; Zhang LM; Zheng YM
    J Basic Microbiol; 2012 Feb; 52(1):35-42. PubMed ID: 22052505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of phosphorous fertilizers on phytoavailability of cadmium in its contaminated soil and related mechanisms].
    Liu ZB; Ji XH; Peng H; Tian FX; Wu JM; Shi LH
    Ying Yong Sheng Tai Xue Bao; 2012 Jun; 23(6):1585-90. PubMed ID: 22937647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of iron plaque and selenium on mercury uptake and translocation in rice seedlings grown in solution culture.
    Zhou XB; Li YY
    Environ Sci Pollut Res Int; 2019 May; 26(14):13795-13803. PubMed ID: 30173387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase of As release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application.
    Lee CH; Huang HH; Syu CH; Lin TH; Lee DY
    J Hazard Mater; 2014 Jul; 276():253-61. PubMed ID: 24892775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.