These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 21179961)
41. Ultraviolet and chlorine disinfection of mycobacterium in wastewater: effect of aggregation. Bohrerova Z; Linden KG Water Environ Res; 2006 Jun; 78(6):565-71. PubMed ID: 16894982 [TBL] [Abstract][Full Text] [Related]
42. Faecal bacteria and bacteriophage inactivation in a full-scale UV disinfection system used for wastewater reclamation. Bourrouet A; García J; Mujeriego R; Peñuelas G Water Sci Technol; 2001; 43(10):187-94. PubMed ID: 11436780 [TBL] [Abstract][Full Text] [Related]
43. Study of marine bacteria inactivation by photochemical processes: disinfection kinetics and growth modeling after treatment. Moreno-Andrés J; Acevedo-Merino A; Nebot E Environ Sci Pollut Res Int; 2018 Oct; 25(28):27693-27703. PubMed ID: 29307073 [TBL] [Abstract][Full Text] [Related]
44. Inactivation of biofilm-bound Pseudomonas aeruginosa bacteria using UVC light emitting diodes (UVC LEDs). Gora SL; Rauch KD; Ontiveros CC; Stoddart AK; Gagnon GA Water Res; 2019 Mar; 151():193-202. PubMed ID: 30594087 [TBL] [Abstract][Full Text] [Related]
45. Comparison of indicator bacteria inactivation by the ultraviolet and the ultraviolet/hydrogen peroxide disinfection processes in humic waters. Teksoy A; Alkan U; Eleren SÇ; Topaç BŞ; Sağban FO; Başkaya HS J Water Health; 2011 Dec; 9(4):659-69. PubMed ID: 22048426 [TBL] [Abstract][Full Text] [Related]
46. Technical and sanitary aspects of wastewater disinfection by UV irradiation for landscape irrigation. Lazarova V; Savoys P Water Sci Technol; 2004; 50(2):203-9. PubMed ID: 15344792 [TBL] [Abstract][Full Text] [Related]
47. Disinfection behavior of a UV-treated wastewater system using constructed wetlands and the rate of reactivation of pathogenic microorganisms. González Y; Salgado P; Vidal G Water Sci Technol; 2019 Nov; 80(10):1870-1879. PubMed ID: 32144219 [TBL] [Abstract][Full Text] [Related]
48. Combined ozone and ultraviolet inactivation of Escherichia coli. Magbanua BS; Savant G; Truax DD J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(6):1043-55. PubMed ID: 16760084 [TBL] [Abstract][Full Text] [Related]
49. Microorganisms inactivation by wavelength combinations of ultraviolet light-emitting diodes (UV-LEDs). Song K; Taghipour F; Mohseni M Sci Total Environ; 2019 May; 665():1103-1110. PubMed ID: 30893742 [TBL] [Abstract][Full Text] [Related]
50. Evaluation of photoreactivation of Escherichia coli and Enterococci after UV disinfection of municipal wastewater. Locas A; Demers J; Payment P Can J Microbiol; 2008 Nov; 54(11):971-5. PubMed ID: 18997854 [TBL] [Abstract][Full Text] [Related]
51. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters. Francy DS; Stelzer EA; Bushon RN; Brady AM; Williston AG; Riddell KR; Borchardt MA; Spencer SK; Gellner TM Water Res; 2012 Sep; 46(13):4164-78. PubMed ID: 22682268 [TBL] [Abstract][Full Text] [Related]
52. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. Song K; Mohseni M; Taghipour F Water Res; 2016 May; 94():341-349. PubMed ID: 26971809 [TBL] [Abstract][Full Text] [Related]
53. [Microbiological studies of the significance of natural and simulated water transmission in the evaluation of UV plants for water disinfection]. Leuker G; Hingst V Zentralbl Hyg Umweltmed; 1990 Oct; 190(4):365-79. PubMed ID: 2080968 [TBL] [Abstract][Full Text] [Related]
54. Inactivation of Salmonella spp. from secondary and tertiary effluents by UV irradiation. Keller R; Passamani F; Vaz L; Cassini ST; Gonçalves RF Water Sci Technol; 2003; 47(3):147-50. PubMed ID: 12639020 [TBL] [Abstract][Full Text] [Related]
55. Photoelectrocatalytic disinfection of water and wastewater: performance evaluation by qPCR and culture techniques. Venieri D; Chatzisymeon E; Politi E; Sofianos SS; Katsaounis A; Mantzavinos D J Water Health; 2013 Mar; 11(1):21-9. PubMed ID: 23428546 [TBL] [Abstract][Full Text] [Related]
56. Use of an ultraviolet light at point-of-dispense faucet to eliminate Pseudomonas aeruginosa. Gerba CP Am J Infect Control; 2015 May; 43(5):528-9. PubMed ID: 25721063 [TBL] [Abstract][Full Text] [Related]
57. Effect of suspended solids on peracetic acid decay and bacterial inactivation kinetics: Experimental assessment and definition of predictive models. Domínguez Henao L; Cascio M; Turolla A; Antonelli M Sci Total Environ; 2018 Dec; 643():936-945. PubMed ID: 29960230 [TBL] [Abstract][Full Text] [Related]
58. Reviewing efficacy of alternative water treatment techniques. Hambidge A Health Estate; 2001 Jun; 55(6):23-5. PubMed ID: 11447890 [TBL] [Abstract][Full Text] [Related]
59. Disinfection of greywater effluent and regrowth potential of selected bacteria. Friedler E; Yardeni A; Gilboa Y; Alfiya Y Water Sci Technol; 2011; 63(5):931-40. PubMed ID: 21411943 [TBL] [Abstract][Full Text] [Related]
60. [The determination of the discrepancy between the mathematically ascertained and experimentally provable efficiency of UV facilities for water disinfection]. Leuker G; Hingst V Zentralbl Hyg Umweltmed; 1992 Oct; 193(3):237-52. PubMed ID: 1457035 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]