These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21180703)

  • 1. Suspended microchannel resonators with piezoresistive sensors.
    Lee J; Chunara R; Shen W; Payer K; Babcock K; Burg TP; Manalis SR
    Lab Chip; 2011 Feb; 11(4):645-51. PubMed ID: 21180703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated measurement of the mass and surface charge of discrete microparticles using a suspended microchannel resonator.
    Dextras P; Burg TP; Manalis SR
    Anal Chem; 2009 Jun; 81(11):4517-23. PubMed ID: 19476391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass sensors with mechanical traps for weighing single cells in different fluids.
    Weng Y; Delgado FF; Son S; Burg TP; Wasserman SC; Manalis SR
    Lab Chip; 2011 Dec; 11(24):4174-80. PubMed ID: 22038401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and high-precision sizing of single particles using parallel suspended microchannel resonator arrays and deconvolution.
    Stockslager MA; Olcum S; Knudsen SM; Kimmerling RJ; Cermak N; Payer KR; Agache V; Manalis SR
    Rev Sci Instrum; 2019 Aug; 90(8):085004. PubMed ID: 31472632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suspended Nanochannel Resonator Arrays with Piezoresistive Sensors for High-Throughput Weighing of Nanoparticles in Solution.
    Gagino M; Katsikis G; Olcum S; Virot L; Cochet M; Thuaire A; Manalis SR; Agache V
    ACS Sens; 2020 Apr; 5(4):1230-1238. PubMed ID: 32233476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the average mass of proteins adsorbed to a nanoparticle by using a suspended microchannel resonator.
    Nejadnik MR; Jiskoot W
    J Pharm Sci; 2015 Feb; 104(2):698-704. PubMed ID: 25318413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular and biomolecular detection based on suspended microchannel resonators.
    Ko J; Jeong J; Son S; Lee J
    Biomed Eng Lett; 2021 Nov; 11(4):367-382. PubMed ID: 34616583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria.
    Bernabini C; Holmes D; Morgan H
    Lab Chip; 2011 Feb; 11(3):407-12. PubMed ID: 21060945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring single cell mass, volume, and density with dual suspended microchannel resonators.
    Bryan AK; Hecht VC; Shen W; Payer K; Grover WH; Manalis SR
    Lab Chip; 2014 Feb; 14(3):569-576. PubMed ID: 24296901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weighing of biomolecules, single cells and single nanoparticles in fluid.
    Burg TP; Godin M; Knudsen SM; Shen W; Carlson G; Foster JS; Babcock K; Manalis SR
    Nature; 2007 Apr; 446(7139):1066-9. PubMed ID: 17460669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free measurement of amyloid elongation by suspended microchannel resonators.
    Wang Y; Modena MM; Platen M; Schaap IA; Burg TP
    Anal Chem; 2015 Feb; 87(3):1821-8. PubMed ID: 25539393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-cost 2D fluorescence detection system for μm sized beads on-chip.
    Segerink LI; Koster MJ; Sprenkels AJ; van den Berg A
    Lab Chip; 2012 Apr; 12(10):1780-3. PubMed ID: 22441632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences.
    Sun T; Holmes D; Gawad S; Green NG; Morgan H
    Lab Chip; 2007 Aug; 7(8):1034-40. PubMed ID: 17653346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel.
    Choi S; Park JK
    Lab Chip; 2007 Jul; 7(7):890-7. PubMed ID: 17594009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Avoiding transduction-induced heating in suspended microchannel resonators using piezoelectricity.
    Maillard D; De Pastina A; Abazari AM; Villanueva LG
    Microsyst Nanoeng; 2021; 7():34. PubMed ID: 34567748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring nanoparticles in liquid with attogram resolution using a microfabricated glass suspended microchannel resonator.
    Daryani MM; Manzaneque T; Wei J; Ghatkesar MK
    Microsyst Nanoeng; 2022; 8():92. PubMed ID: 36051745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip determination of spermatozoa concentration using electrical impedance measurements.
    Segerink LI; Sprenkels AJ; ter Braak PM; Vermes I; van den Berg A
    Lab Chip; 2010 Apr; 10(8):1018-24. PubMed ID: 20358109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suspended microchannel resonators for ultralow volume universal detection.
    Son S; Grover WH; Burg TP; Manalis SR
    Anal Chem; 2008 Jun; 80(12):4757-60. PubMed ID: 18489125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High precision particle mass sensing using microchannel resonators in the second vibration mode.
    Lee J; Bryan AK; Manalis SR
    Rev Sci Instrum; 2011 Feb; 82(2):023704. PubMed ID: 21361598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification and characterization of micrometer and submicrometer subvisible particles in protein therapeutics by use of a suspended microchannel resonator.
    Patel AR; Lau D; Liu J
    Anal Chem; 2012 Aug; 84(15):6833-40. PubMed ID: 22794526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.