These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21180703)

  • 21. Using buoyant mass to measure the growth of single cells.
    Godin M; Delgado FF; Son S; Grover WH; Bryan AK; Tzur A; Jorgensen P; Payer K; Grossman AD; Kirschner MW; Manalis SR
    Nat Methods; 2010 May; 7(5):387-90. PubMed ID: 20383132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid determination of cell mass and density using digitally controlled electric field in a microfluidic chip.
    Zhao Y; Lai HS; Zhang G; Lee GB; Li WJ
    Lab Chip; 2014 Nov; 14(22):4426-34. PubMed ID: 25254511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resolution enhancement of suspended microchannel resonators for weighing of biomolecular complexes in solution.
    Modena MM; Wang Y; Riedel D; Burg TP
    Lab Chip; 2014 Jan; 14(2):342-50. PubMed ID: 24247122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetophoretic position detection for multiplexed immunoassay using colored microspheres in a microchannel.
    Hahn YK; Chang JB; Jin Z; Kim HS; Park JK
    Biosens Bioelectron; 2009 Mar; 24(7):1870-6. PubMed ID: 18990558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Note: precision viscosity measurement using suspended microchannel resonators.
    Lee I; Park K; Lee J
    Rev Sci Instrum; 2012 Nov; 83(11):116106. PubMed ID: 23206113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new floating electrode structure for generating homogeneous electrical fields in microfluidic channels.
    Segerink LI; Sprenkels AJ; Bomer JG; Vermes I; van den Berg A
    Lab Chip; 2011 Jun; 11(12):1995-2001. PubMed ID: 21279234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward attogram mass measurements in solution with suspended nanochannel resonators.
    Lee J; Shen W; Payer K; Burg TP; Manalis SR
    Nano Lett; 2010 Jul; 10(7):2537-42. PubMed ID: 20527897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dielectrophoretic separation of micron and submicron particles: a review.
    Dash S; Mohanty S
    Electrophoresis; 2014 Sep; 35(18):2656-72. PubMed ID: 24930837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A microwave interferometric system for simultaneous actuation and detection of single biological cells.
    Ferrier GA; Romanuik SF; Thomson DJ; Bridges GE; Freeman MR
    Lab Chip; 2009 Dec; 9(23):3406-12. PubMed ID: 19904408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated nanopore/microchannel devices for ac electrokinetic trapping of particles.
    Kovarik ML; Jacobson SC
    Anal Chem; 2008 Feb; 80(3):657-64. PubMed ID: 18179245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes.
    Jen CP; Weng CH; Huang CT
    Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inertial separation in a contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    J Chromatogr A; 2011 Jul; 1218(27):4138-43. PubMed ID: 21176909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors.
    Klauke N; Monaghan P; Sinclair G; Padgett M; Cooper J
    Lab Chip; 2006 Jun; 6(6):788-93. PubMed ID: 16738732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dielectrophoresis-Raman spectroscopy system for analysing suspended nanoparticles.
    Chrimes AF; Kayani AA; Khoshmanesh K; Stoddart PR; Mulvaney P; Mitchell A; Kalantar-Zadeh K
    Lab Chip; 2011 Mar; 11(5):921-8. PubMed ID: 21267497
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bead-based immunoassays using a micro-chip flow cytometer.
    Holmes D; She JK; Roach PL; Morgan H
    Lab Chip; 2007 Aug; 7(8):1048-56. PubMed ID: 17653348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device.
    Justin G; Nasir M; Ligler FS
    Anal Bioanal Chem; 2011 May; 400(5):1347-58. PubMed ID: 21448604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles.
    Lin S; Crozier KB
    Lab Chip; 2011 Dec; 11(23):4047-51. PubMed ID: 22011760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.