These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21180703)

  • 41. Silicon photonic sensors incorporated in a digital microfluidic system.
    Lerma Arce C; Witters D; Puers R; Lammertyn J; Bienstman P
    Anal Bioanal Chem; 2012 Dec; 404(10):2887-94. PubMed ID: 22926129
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Submicron separation of microspheres via travelling surface acoustic waves.
    Destgeer G; Ha BH; Jung JH; Sung HJ
    Lab Chip; 2014 Dec; 14(24):4665-72. PubMed ID: 25312065
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Miniature sensor suitable for electronic nose applications.
    Pinnaduwage LA; Gehl AC; Allman SL; Johansson A; Boisen A
    Rev Sci Instrum; 2007 May; 78(5):055101. PubMed ID: 17552854
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New technologies for measuring single cell mass.
    Popescu G; Park K; Mir M; Bashir R
    Lab Chip; 2014 Feb; 14(4):646-52. PubMed ID: 24322181
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.
    Sochol RD; Lu A; Lei J; Iwai K; Lee LP; Lin L
    Lab Chip; 2014 May; 14(9):1585-94. PubMed ID: 24632685
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.
    Lei T; Poon AW
    Opt Express; 2013 Jan; 21(2):1520-30. PubMed ID: 23389134
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence.
    Joo S; Kim KH; Kim HC; Chung TD
    Biosens Bioelectron; 2010 Feb; 25(6):1509-15. PubMed ID: 20004091
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis.
    Gallo-Villanueva RC; Pérez-González VH; Davalos RV; Lapizco-Encinas BH
    Electrophoresis; 2011 Sep; 32(18):2456-65. PubMed ID: 21874656
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanomechanical hydrodynamic force sensing using suspended microfluidic channels.
    Martín-Pérez A; Ramos D
    Microsyst Nanoeng; 2023; 9():53. PubMed ID: 37168769
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device.
    Zhu L; Li Y; Zhang Q; Wang H; Zhu M
    Biomed Microdevices; 2010 Feb; 12(1):169-77. PubMed ID: 19924539
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of an aptamer-based impedimetric bioassay using microfluidic system and magnetic separation for protein detection.
    Wang Y; Ye Z; Ping J; Jing S; Ying Y
    Biosens Bioelectron; 2014 Sep; 59():106-11. PubMed ID: 24709326
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An optically driven pump for microfluidics.
    Leach J; Mushfique H; di Leonardo R; Padgett M; Cooper J
    Lab Chip; 2006 Jun; 6(6):735-9. PubMed ID: 16738723
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Massively parallel concentration device for multiplexed immunoassays.
    Ko SH; Kim SJ; Cheow LF; Li LD; Kang KH; Han J
    Lab Chip; 2011 Apr; 11(7):1351-8. PubMed ID: 21321747
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidic fabrication of SERS-active microspheres for molecular detection.
    Hwang H; Kim SH; Yang SM
    Lab Chip; 2011 Jan; 11(1):87-92. PubMed ID: 20959939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array.
    Han KH; Han SI; Frazier AB
    Lab Chip; 2009 Oct; 9(20):2958-64. PubMed ID: 19789750
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Route toward Ultrasensitive Layered Carbon Based Piezoresistive Sensors through Hierarchical Contact Design.
    Duan X; Luo J; Yao Y; Liu T
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43133-43142. PubMed ID: 29154534
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Continuous manipulation and separation of particles using combined obstacle- and curvature-induced direct current dielectrophoresis.
    Li M; Li S; Li W; Wen W; Alici G
    Electrophoresis; 2013 Apr; 34(7):952-60. PubMed ID: 23436345
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators.
    von Muhlen MG; Brault ND; Knudsen SM; Jiang S; Manalis SR
    Anal Chem; 2010 Mar; 82(5):1905-10. PubMed ID: 20148583
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.