These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 21180761)
21. Enhanced rate performance and cyclic stability of Fe3O4-graphene nanocomposites for Li ion battery anodes. Behera SK Chem Commun (Camb); 2011 Oct; 47(37):10371-3. PubMed ID: 21847466 [TBL] [Abstract][Full Text] [Related]
22. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. Cui LF; Hu L; Choi JW; Cui Y ACS Nano; 2010 Jul; 4(7):3671-8. PubMed ID: 20518567 [TBL] [Abstract][Full Text] [Related]
23. Conformal surface coatings to enable high volume expansion Li-ion anode materials. Riley LA; Cavanagh AS; George SM; Jung YS; Yan Y; Lee SH; Dillon AC Chemphyschem; 2010 Jul; 11(10):2124-30. PubMed ID: 20449864 [TBL] [Abstract][Full Text] [Related]
24. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. Hu L; Wu H; Hong SS; Cui L; McDonough JR; Bohy S; Cui Y Chem Commun (Camb); 2011 Jan; 47(1):367-9. PubMed ID: 20830432 [TBL] [Abstract][Full Text] [Related]
25. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device. Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478 [TBL] [Abstract][Full Text] [Related]
26. Thin, flexible secondary Li-ion paper batteries. Hu L; Wu H; La Mantia F; Yang Y; Cui Y ACS Nano; 2010 Oct; 4(10):5843-8. PubMed ID: 20836501 [TBL] [Abstract][Full Text] [Related]
27. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. Wang Y; Zhang HJ; Lu L; Stubbs LP; Wong CC; Lin J ACS Nano; 2010 Aug; 4(8):4753-61. PubMed ID: 20666372 [TBL] [Abstract][Full Text] [Related]
28. Facile synthesis of porous Fe7Co3/carbon nanocomposites and their applications as magnetically separable adsorber and catalyst support. Wang Z; Liu R; Zhao F; Liu X; Lv M; Meng J Langmuir; 2010 Jun; 26(12):10135-40. PubMed ID: 20369845 [TBL] [Abstract][Full Text] [Related]
29. Li-alloy based anode materials for Li secondary batteries. Park CM; Kim JH; Kim H; Sohn HJ Chem Soc Rev; 2010 Aug; 39(8):3115-41. PubMed ID: 20593097 [TBL] [Abstract][Full Text] [Related]
30. Nanostructured silicon anodes for lithium ion rechargeable batteries. Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146 [TBL] [Abstract][Full Text] [Related]
31. Metallic anodes for next generation secondary batteries. Kim H; Jeong G; Kim YU; Kim JH; Park CM; Sohn HJ Chem Soc Rev; 2013 Dec; 42(23):9011-34. PubMed ID: 23954955 [TBL] [Abstract][Full Text] [Related]
32. Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries. Liu J; Li W; Manthiram A Chem Commun (Camb); 2010 Mar; 46(9):1437-9. PubMed ID: 20162140 [TBL] [Abstract][Full Text] [Related]
33. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185 [TBL] [Abstract][Full Text] [Related]
34. Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries. Cao FF; Xin S; Guo YG; Wan LJ Phys Chem Chem Phys; 2011 Feb; 13(6):2014-20. PubMed ID: 21203647 [TBL] [Abstract][Full Text] [Related]
35. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries. Ng SH; Tran N; Bramnik KG; Hibst H; Novák P Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463 [TBL] [Abstract][Full Text] [Related]
36. Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material. Gao P; Fu J; Yang J; Lv R; Wang J; Nuli Y; Tang X Phys Chem Chem Phys; 2009 Dec; 11(47):11101-5. PubMed ID: 20024376 [TBL] [Abstract][Full Text] [Related]
37. Direct electrodeposition of Cu2Sb for lithium-ion battery anodes. Mosby JM; Prieto AL J Am Chem Soc; 2008 Aug; 130(32):10656-61. PubMed ID: 18627144 [TBL] [Abstract][Full Text] [Related]
38. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. Li H; Wang Y; Na H; Liu H; Zhou H J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514 [TBL] [Abstract][Full Text] [Related]
39. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Notter DA; Gauch M; Widmer R; Wäger P; Stamp A; Zah R; Althaus HJ Environ Sci Technol; 2010 Sep; 44(17):6550-6. PubMed ID: 20695466 [TBL] [Abstract][Full Text] [Related]
40. A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. Guo J; Wang C Chem Commun (Camb); 2010 Mar; 46(9):1428-30. PubMed ID: 20162137 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]