These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2118110)

  • 1. Ventilatory effects of hypercapnic end-tidal PCO2 clamps during aerobic exercise of varying intensity.
    Essfeld D; Hoffmann U; Stegemann J
    Eur J Appl Physiol Occup Physiol; 1990; 60(6):412-7. PubMed ID: 2118110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arterial to end-tidal PCO2 difference varies with different ventilatory conditions during steady state hypercapnia in the rat.
    Tojima H; Kuriyama T; Fukuda Y
    Jpn J Physiol; 1988; 38(4):445-57. PubMed ID: 3148777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of arterial, end-tidal and transcutaneous PCO2 during moderate exercise and external CO2 loading in humans.
    Hoffmann U; Essfeld D; Stegemann J
    Eur J Appl Physiol Occup Physiol; 1990; 61(1-2):1-4. PubMed ID: 2127017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the end-tidal arterial PCO2 gradient during exercise in normal subjects and in patients with severe COPD.
    Liu Z; Vargas F; Stansbury D; Sasse SA; Light RW
    Chest; 1995 May; 107(5):1218-24. PubMed ID: 7750309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tidal volume perception in normal subjects: the effect of altered arterial PCO2.
    Manning HL; Slogic S; Leiter JC
    Respir Physiol; 1994 Apr; 96(1):99-110. PubMed ID: 8023024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of end-tidal and arterial PCO2 gradients using a breathing model.
    Benallal H; Busso T
    Eur J Appl Physiol; 2000 Nov; 83(4 -5):402-8. PubMed ID: 11138582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of hypercapnia by normal subjects.
    Schwartzstein RM; La Hive K; Pope A; Steinbrook RA; Leith DE; Weiss JW; Fencl V; Weinberger SE
    Clin Sci (Lond); 1987 Sep; 73(3):333-5. PubMed ID: 3115668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic acidosis and breathlessness during exercise and hypercapnia in man.
    Lane R; Adams L
    J Physiol; 1993 Feb; 461():47-61. PubMed ID: 8350272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of subanaesthetic sevoflurane on ventilation. 1: Response to acute and sustained hypercapnia in humans.
    Pandit JJ; Manning-Fox J; Dorrington KL; Robbins PA
    Br J Anaesth; 1999 Aug; 83(2):204-9. PubMed ID: 10618930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of inspiratory resistive load on respiratory control in hypercapnia and exercise.
    Poon CS
    J Appl Physiol (1985); 1989 May; 66(5):2391-9. PubMed ID: 2501281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the central chemosensitivity in man under transient or progressive hypercapnia.
    Jammes Y; Fornaris M; Vanuxem D; Grimaud C
    Arch Int Physiol Biochim; 1980 May; 88(2):177-89. PubMed ID: 6159842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ventilation on acid-base balance and oxygenation in low blood-flow states.
    Idris AH; Staples ED; O'Brien DJ; Melker RJ; Rush WJ; Del Duca KD; Falk JL
    Crit Care Med; 1994 Nov; 22(11):1827-34. PubMed ID: 7956288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO2-H+ stimuli and neural muscular drive to ventilation during dynamic exercise: comparison of stimuli at constant levels of ventilation.
    Essfeld D; Stegemann J
    Int J Sports Med; 1983 Nov; 4(4):215-22. PubMed ID: 6418666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between middle cerebral artery blood velocity and end-tidal PCO2 in the hypocapnic-hypercapnic range in humans.
    Ide K; Eliasziw M; Poulin MJ
    J Appl Physiol (1985); 2003 Jul; 95(1):129-37. PubMed ID: 19278048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Hypercapnia on Myocardial Blood Flow in Healthy Human Subjects.
    Pelletier-Galarneau M; deKemp RA; Hunter CRRN; Klein R; Klein M; Ironstone J; Fisher JA; Ruddy TD
    J Nucl Med; 2018 Jan; 59(1):100-106. PubMed ID: 28619736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of exogenous dopamine on the hypercapnic ventilatory response in cats during normoxia.
    Berkenbosch A; DeGoede J; Olievier CN; Ward DS
    Pflugers Arch; 1986 Nov; 407(5):504-9. PubMed ID: 3097619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. End tidal-to-arterial CO2 and O2 gas gradients at low- and high-altitude during dynamic end-tidal forcing.
    Tymko MM; Ainslie PN; MacLeod DB; Willie CK; Foster GE
    Am J Physiol Regul Integr Comp Physiol; 2015 Jun; 308(11):R895-906. PubMed ID: 25810386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of inspiratory resistive loading on control of ventilation during progressive exercise.
    D'Urzo AD; Chapman KR; Rebuck AS
    J Appl Physiol (1985); 1987 Jan; 62(1):134-40. PubMed ID: 3104283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring the human ventilatory and cerebral blood flow response to CO2: a technical consideration for the end-tidal-to-arterial gas gradient.
    Tymko MM; Hoiland RL; Kuca T; Boulet LM; Tremblay JC; Pinske BK; Williams AM; Foster GE
    J Appl Physiol (1985); 2016 Jan; 120(2):282-96. PubMed ID: 26542522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellar modulation of ventilatory response to progressive hypercapnia.
    Xu F; Owen J; Frazier DT
    J Appl Physiol (1985); 1994 Sep; 77(3):1073-80. PubMed ID: 7836106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.