BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 21181143)

  • 21. Membrane interactions in small fast-tumbling bicelles as studied by 31P NMR.
    Bodor A; Kövér KE; Mäler L
    Biochim Biophys Acta; 2015 Mar; 1848(3):760-6. PubMed ID: 25497765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of magainin and alamethicin in model membranes studied by x-ray reflectivity.
    Li C; Salditt T
    Biophys J; 2006 Nov; 91(9):3285-300. PubMed ID: 16920839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tryptophan-anchored transmembrane peptides promote formation of nonlamellar phases in phosphatidylethanolamine model membranes in a mismatch-dependent manner.
    van der Wel PC; Pott T; Morein S; Greathouse DV; Koeppe RE; Killian JA
    Biochemistry; 2000 Mar; 39(11):3124-33. PubMed ID: 10715134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic polypeptide adsorption to Cu-IDA containing lipid films: a model for protein-membrane interactions.
    Kent MS; Yim H; Murton JK; Sasaki DY; Polizzotti BD; Charati MB; Kiick KL; Kuzmenko I; Satija S
    Langmuir; 2008 Feb; 24(3):932-42. PubMed ID: 18179259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of lipid composition on the topography of membrane-associated hydrophobic helices: stabilization of transmembrane topography by anionic lipids.
    Shahidullah K; London E
    J Mol Biol; 2008 Jun; 379(4):704-18. PubMed ID: 18479706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Orientations of helical peptides in membrane bilayers by solid state NMR spectroscopy.
    Bechinger B; Gierasch LM; Montal M; Zasloff M; Opella SJ
    Solid State Nucl Magn Reson; 1996 Dec; 7(3):185-91. PubMed ID: 9050156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes.
    Schäfer LV; de Jong DH; Holt A; Rzepiela AJ; de Vries AH; Poolman B; Killian JA; Marrink SJ
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1343-8. PubMed ID: 21205902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A.
    de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA
    Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response of GWALP transmembrane peptides to changes in the tryptophan anchor positions.
    Vostrikov VV; Koeppe RE
    Biochemistry; 2011 Sep; 50(35):7522-35. PubMed ID: 21800919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alamethicin aggregation in lipid membranes.
    Pan J; Tristram-Nagle S; Nagle JF
    J Membr Biol; 2009 Sep; 231(1):11-27. PubMed ID: 19789905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes.
    Lomize AL; Pogozheva ID; Mosberg HI
    J Chem Inf Model; 2011 Apr; 51(4):930-46. PubMed ID: 21438606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomolecular and amphiphilic films probed by surface sensitive X-ray and neutron scattering.
    Salditt T; Brotons G
    Anal Bioanal Chem; 2004 Aug; 379(7-8):960-73. PubMed ID: 15338090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of transmembrane peptides on bilayers of phosphatidylcholines with different acyl chain lengths studied by solid-state NMR.
    Byström T; Strandberg E; Kovacs FA; Cross TA; Lindblom G
    Biochim Biophys Acta; 2000 Dec; 1509(1-2):335-45. PubMed ID: 11118544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bilayer thickness determines the alignment of model polyproline helices in lipid membranes.
    Kubyshkin V; Grage SL; Ulrich AS; Budisa N
    Phys Chem Chem Phys; 2019 Oct; 21(40):22396-22408. PubMed ID: 31577299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How Membrane-Active Peptides Get into Lipid Membranes.
    Sani MA; Separovic F
    Acc Chem Res; 2016 Jun; 49(6):1130-8. PubMed ID: 27187572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oblique membrane insertion of viral fusion peptide probed by neutron diffraction.
    Bradshaw JP; Darkes MJ; Harroun TA; Katsaras J; Epand RM
    Biochemistry; 2000 Jun; 39(22):6581-5. PubMed ID: 10828975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the microscopic and mesoscopic perturbations of lipid bilayers upon interaction with the MPER domain of the HIV glycoprotein gp41.
    Oliva R; Emendato A; Vitiello G; De Santis A; Grimaldi M; D'Ursi AM; Busi E; Del Vecchio P; Petraccone L; D'Errico G
    Biochim Biophys Acta; 2016 Aug; 1858(8):1904-13. PubMed ID: 27179640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perturbation of a lipid membrane by amphipathic peptides and its role in pore formation.
    Zemel A; Ben-Shaul A; May S
    Eur Biophys J; 2005 May; 34(3):230-42. PubMed ID: 15619088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.