These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 21181312)

  • 1. Kinetic comparison of all eleven viral polyprotein cleavage site processing events by SARS-CoV-2 main protease using a linked protein FRET platform.
    Kenward C; Vuckovic M; Paetzel M; Strynadka NCJ
    J Biol Chem; 2024 Jun; 300(6):107367. PubMed ID: 38750796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride.
    Chang HP; Chou CY; Chang GG
    Biophys J; 2007 Feb; 92(4):1374-83. PubMed ID: 17142288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the SARS coronavirus main proteinase as an active C2 crystallographic dimer.
    Xu T; Ooi A; Lee HC; Wilmouth R; Liu DX; Lescar J
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Nov; 61(Pt 11):964-6. PubMed ID: 16511208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the interactions of Ti-containing polyoxometalates (POMs) with SARS-CoV 3CLpro by molecular modeling.
    Hu D; Shao C; Guan W; Su Z; Sun J
    J Inorg Biochem; 2007 Jan; 101(1):89-94. PubMed ID: 17049610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural genomics of the severe acute respiratory syndrome coronavirus: nuclear magnetic resonance structure of the protein nsP7.
    Peti W; Johnson MA; Herrmann T; Neuman BW; Buchmeier MJ; Nelson M; Joseph J; Page R; Stevens RC; Kuhn P; Wüthrich K
    J Virol; 2005 Oct; 79(20):12905-13. PubMed ID: 16188992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary crystallographic analysis of avian infectious bronchitis virus main protease.
    Li J; Shen W; Liao M; Bartlam M
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Jan; 63(Pt 1):24-6. PubMed ID: 17183167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SARS-CoV heptad repeat 2 is a trimer of parallel helices.
    Celigoy J; Ramirez B; Caffrey M
    Protein Sci; 2011 Dec; 20(12):2125-9. PubMed ID: 21922588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Resolution Substrate Specificity Profiling of SARS-CoV-2 M
    Yaghi RM; Andrews CL; Wylie DC; Iverson BL
    ACS Chem Biol; 2024 Jun; ():. PubMed ID: 38865301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR Spectroscopy of the Main Protease of SARS-CoV-2 and Fragment-Based Screening Identify Three Protein Hotspots and an Antiviral Fragment.
    Cantrelle FX; Boll E; Brier L; Moschidi D; Belouzard S; Landry V; Leroux F; Dewitte F; Landrieu I; Dubuisson J; Deprez B; Charton J; Hanoulle X
    Angew Chem Int Ed Engl; 2021 Nov; 60(48):25428-25435. PubMed ID: 34570415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2.
    Behnam MAM
    Biochimie; 2021 Mar; 182():177-184. PubMed ID: 33484784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in Developing Inhibitors of SARS-CoV-2 3C-Like Protease.
    Li Q; Kang C
    Microorganisms; 2020 Aug; 8(8):. PubMed ID: 32824639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal Structure of Feline Infectious Peritonitis Virus Main Protease in Complex with Synergetic Dual Inhibitors.
    Wang F; Chen C; Liu X; Yang K; Xu X; Yang H
    J Virol; 2016 Feb; 90(4):1910-7. PubMed ID: 26656689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping inhibitor binding modes on an active cysteine protease via nuclear magnetic resonance spectroscopy.
    Lee GM; Balouch E; Goetz DH; Lazic A; McKerrow JH; Craik CS
    Biochemistry; 2012 Dec; 51(50):10087-98. PubMed ID: 23181936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1H, 13C and 15N resonance assignments of SARS-CoV main protease N-terminal domain.
    Zhang S; Zhong N; Ren X; Jin C; Xia B
    Biomol NMR Assign; 2011 Oct; 5(2):143-5. PubMed ID: 21181312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer.
    Zhong N; Zhang S; Xue F; Kang X; Zou P; Chen J; Liang C; Rao Z; Jin C; Lou Z; Xia B
    Protein Sci; 2009 Apr; 18(4):839-44. PubMed ID: 19319935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins.
    Muramatsu T; Kim YT; Nishii W; Terada T; Shirouzu M; Yokoyama S
    FEBS J; 2013 May; 280(9):2002-13. PubMed ID: 23452147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation and maturation of SARS-CoV main protease.
    Xia B; Kang X
    Protein Cell; 2011 Apr; 2(4):282-90. PubMed ID: 21533772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Without its N-finger, the main protease of severe acute respiratory syndrome coronavirus can form a novel dimer through its C-terminal domain.
    Zhong N; Zhang S; Zou P; Chen J; Kang X; Li Z; Liang C; Jin C; Xia B
    J Virol; 2008 May; 82(9):4227-34. PubMed ID: 18305043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.
    Báez-Santos YM; St John SE; Mesecar AD
    Antiviral Res; 2015 Mar; 115():21-38. PubMed ID: 25554382
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.