BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 21181963)

  • 21. Artificial horizon effects on motion sickness and performance.
    Tal D; Gonen A; Wiener G; Bar R; Gil A; Nachum Z; Shupak A
    Otol Neurotol; 2012 Jul; 33(5):878-85. PubMed ID: 22643447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motion sickness and vestibular hypersensitivity.
    Mallinson AI; Longridge NS
    J Otolaryngol; 2002 Dec; 31(6):381-5. PubMed ID: 12593552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors related to the use of a head-mounted display for individuals with low vision.
    Lorenzini MC; Hämäläinen AM; Wittich W
    Disabil Rehabil; 2021 Aug; 43(17):2472-2486. PubMed ID: 31885285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. "Conflicting" motion cues to the visual and vestibular self-motion systems around 0.06 Hz evoke simulator sickness.
    Duh HB; Parker DE; Philips JO; Furness TA
    Hum Factors; 2004; 46(1):142-53. PubMed ID: 15151161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness.
    Tychsen L; Foeller P
    Am J Ophthalmol; 2020 Jan; 209():151-159. PubMed ID: 31377280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of unexpected visual motion on postural sway and motion sickness.
    Dennison M; D'Zmura M
    Appl Ergon; 2018 Sep; 71():9-16. PubMed ID: 29764619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of bone-conducted vibration on simulator sickness in virtual reality.
    Weech S; Moon J; Troje NF
    PLoS One; 2018; 13(3):e0194137. PubMed ID: 29590147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term effects of vestibular rehabilitation and head-mounted gaming task procedure in unilateral vestibular hypofunction: a 12-month follow-up of a randomized controlled trial.
    Viziano A; Micarelli A; Augimeri I; Micarelli D; Alessandrini M
    Clin Rehabil; 2019 Jan; 33(1):24-33. PubMed ID: 30012022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Severe motion sickness in infants and children.
    Lipson S; Wang A; Corcoran M; Zhou G; Brodsky JR
    Eur J Paediatr Neurol; 2020 Sep; 28():176-179. PubMed ID: 32682672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual blur and motion sickness in an optokinetic drum.
    Bonato F; Bubka A; Thornton W
    Aerosp Med Hum Perform; 2015 May; 86(5):440-4. PubMed ID: 25945660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effectiveness of conventional versus virtual reality-based balance exercises in vestibular rehabilitation for unilateral peripheral vestibular loss: results of a randomized controlled trial.
    Meldrum D; Herdman S; Vance R; Murray D; Malone K; Duffy D; Glennon A; McConn-Walsh R
    Arch Phys Med Rehabil; 2015 Jul; 96(7):1319-1328.e1. PubMed ID: 25842051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vestibular Rehabilitation for Peripheral Vestibular Hypofunction: An Evidence-Based Clinical Practice Guideline: FROM THE AMERICAN PHYSICAL THERAPY ASSOCIATION NEUROLOGY SECTION.
    Hall CD; Herdman SJ; Whitney SL; Cass SP; Clendaniel RA; Fife TD; Furman JM; Getchius TS; Goebel JA; Shepard NT; Woodhouse SN
    J Neurol Phys Ther; 2016 Apr; 40(2):124-55. PubMed ID: 26913496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous Head Motion is a Greater Motor Control Challenge than Transient Head Motion in Patients with Loss of Vestibular Function.
    Wang L; Zobeiri OA; Millar JL; Souza Silva W; Schubert MC; Cullen KE
    Neurorehabil Neural Repair; 2021 Oct; 35(10):890-902. PubMed ID: 34365845
    [No Abstract]   [Full Text] [Related]  

  • 35. Control Mechanisms of Static and Dynamic Balance in Adults With and Without Vestibular Dysfunction in Oculus Virtual Environments.
    Lubetzky AV; Hujsak BD; Kelly JL; Fu G; Perlin K
    PM R; 2018 Nov; 10(11):1223-1236.e2. PubMed ID: 30503230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time.
    Nalivaiko E; Davis SL; Blackmore KL; Vakulin A; Nesbitt KV
    Physiol Behav; 2015 Nov; 151():583-90. PubMed ID: 26340855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Modern means of statokinetic improvement and vestibular rehabilitation].
    Syroezhkin FA; Buinov LG; Dvoryanchikov VV; Blaginin AA
    Voen Med Zh; 2016 Apr; 337(4):36-42. PubMed ID: 27416720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vestibular and postural findings in the motion sickness syndrome.
    Hamid MA
    Otolaryngol Head Neck Surg; 1991 Jan; 104(1):135-6. PubMed ID: 1900614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual Occlusion Decreases Motion Sickness in a Flight Simulator.
    Ishak S; Bubka A; Bonato F
    Perception; 2018 May; 47(5):521-530. PubMed ID: 29490570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visual contributions to human self-motion perception during horizontal body rotation.
    Mergner T; Schweigart G; Müller M; Hlavacka F; Becker W
    Arch Ital Biol; 2000 Apr; 138(2):139-66. PubMed ID: 10782255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.