These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 21182257)

  • 21. Photoluminescence of self-trapped excitons in boron nitride nanotubes.
    Williams RT; Ucer KB; Carroll DL; Berzina B; Trinkler L; Korsak V; Krutohvostov R
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6504-8. PubMed ID: 19205230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of hexagonal boron nitride impurities in boron nitride nanotubes
    Harrison H; Lamb JT; Nowlin KS; Guenthner AJ; Ghiassi KB; Kelkar AD; Alston JR
    Nanoscale Adv; 2019 May; 1(5):1693-1701. PubMed ID: 36134222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and electronic properties of fluorinated boron nitride nanotubes.
    Lai L; Song W; Lu J; Gao Z; Nagase S; Ni M; Mei WN; Liu J; Yu D; Ye H
    J Phys Chem B; 2006 Jul; 110(29):14092-7. PubMed ID: 16854105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings.
    Boinovich LB; Emelyanenko AM; Pashinin AS; Lee CH; Drelich J; Yap YK
    Langmuir; 2012 Jan; 28(2):1206-16. PubMed ID: 22149295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-resolved synchrotron radiation excited optical luminescence: light-emission properties of silicon-based nanostructures.
    Sham TK; Rosenberg RA
    Chemphyschem; 2007 Dec; 8(18):2557-67. PubMed ID: 17994661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical investigation of the divacancies in boron nitride nanotubes: properties and surface reactivity toward various adsorbates.
    Zhao JX; Ding YH
    J Chem Phys; 2009 Jul; 131(1):014706. PubMed ID: 19586116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. X-ray-excited optical luminescence and X-ray absorption fine-structures studies of CdWO4 scintillator.
    Novais SM; Valerio ME; Macedo ZS
    J Synchrotron Radiat; 2012 Jul; 19(Pt 4):591-5. PubMed ID: 22713895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic structure effects on B K-edge XANES of minerals.
    Sipr O; Rocca F
    J Synchrotron Radiat; 2010 May; 17(3):367-73. PubMed ID: 20400835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Core and valence exciton formation in x-ray absorption, x-ray emission and x-ray excited optical luminescence from passivated Si nanocrystals at the Si L(2,3) edge.
    Siller L; Krishnamurthy S; Kjeldgaard L; Horrocks BR; Chao Y; Houlton A; Chakraborty AK; Hunt MR
    J Phys Condens Matter; 2009 Mar; 21(9):095005. PubMed ID: 21817378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective growth of boron nitride nanotubes by plasma-enhanced chemical vapor deposition at low substrate temperature.
    Guo L; Singh RN
    Nanotechnology; 2008 Feb; 19(6):065601. PubMed ID: 21730699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm.
    Huang Y; Lin J; Tang C; Bando Y; Zhi C; Zhai T; Dierre B; Sekiguchi T; Golberg D
    Nanotechnology; 2011 Apr; 22(14):145602. PubMed ID: 21346299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of O2 and H2O adsorbates on field-emission properties of an (8, 0) boron nitride nanotube: a density functional theory study.
    Zhao JX; Ding YH
    Nanotechnology; 2009 Feb; 20(8):085704. PubMed ID: 19417465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soft-X-ray emission spectroscopy based on TEM-Toward a total electronic structure analysis.
    Terauchi M; Kawana M
    Ultramicroscopy; 2006; 106(11-12):1069-75. PubMed ID: 16870342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential room temperature ferromagnetic O/BN and F/BN bilayers.
    Yang J; Kim D; Hong J
    J Phys Condens Matter; 2011 Feb; 23(6):066001. PubMed ID: 21406936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl2O4 phosphor.
    Rezende MV; Montes PJ; Andrade AB; Macedo ZS; Valerio ME
    Phys Chem Chem Phys; 2016 Jun; 18(26):17646-54. PubMed ID: 27306425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. X-ray excited optical luminescence detection by scanning near-field optical microscope: a new tool for nanoscience.
    Larcheri S; Rocca F; Jandard F; Pailharey D; Graziola R; Kuzmin A; Purans J
    Rev Sci Instrum; 2008 Jan; 79(1):013702. PubMed ID: 18248034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. X-ray photoelectron spectroscopy and first principles calculation of BCN nanotubes.
    Kim SY; Park J; Choi HC; Ahn JP; Hou JQ; Kang HS
    J Am Chem Soc; 2007 Feb; 129(6):1705-16. PubMed ID: 17243688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peculiar near-band-edge emission of polarization-dependent XEOL from a non-polar a-plane ZnO wafer.
    Lin BH; Wu YC; Chen HY; Tseng SC; Wu JX; Li XY; Chen BY; Lee CY; Yin GC; Chang SH; Tang MT; Hsieh WF
    Opt Express; 2018 Feb; 26(3):2731-2739. PubMed ID: 29401809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modifications involved by acetylacetone in properties of sol-gel derived Y(3)Al(5)O(12):Tb(3+)- II: optical features.
    Potdevin A; Chadeyron G; Briois V; Leroux F; Mahiou R
    Dalton Trans; 2010 Oct; 39(37):8718-24. PubMed ID: 20725657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical gap measurements on individual boron nitride nanotubes by electron energy loss spectroscopy.
    Arenal R; Stéphan O; Kociak M; Taverna D; Loiseau A; Colliex C
    Microsc Microanal; 2008 Jun; 14(3):274-82. PubMed ID: 18482472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.