BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21182268)

  • 1. Double-threaded dimer and supramolecular oligomer formed by stilbene modified cyclodextrin: effect of acyl migration and photostimuli.
    Kanaya A; Takashima Y; Harada A
    J Org Chem; 2011 Jan; 76(2):492-9. PubMed ID: 21182268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switching between supramolecular dimer and nonthreaded supramolecular self-assembly of stilbene amide-alpha-cyclodextrin by photoirradiation.
    Yamauchi K; Takashima Y; Hashidzume A; Yamaguchi H; Harada A
    J Am Chem Soc; 2008 Apr; 130(15):5024-5. PubMed ID: 18335989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection between pinching-type and supramolecular polymer-type complexes by alpha-cyclodextrin-beta-cyclodextrin hetero-dimer and hetero-cinnamamide guest dimers.
    Takahashi H; Takashima Y; Yamaguchi H; Harada A
    J Org Chem; 2006 Jun; 71(13):4878-83. PubMed ID: 16776516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Social self-sorting: alternating supramolecular oligomer consisting of isomers.
    Tomimasu N; Kanaya A; Takashima Y; Yamaguchi H; Harada A
    J Am Chem Soc; 2009 Sep; 131(34):12339-43. PubMed ID: 19705917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the supramolecular systems of 5-(2-hydroxy phenyl)-10,15,20-tris (4-methoxy phenyl) porphyrin with cyclodextrins.
    Kong LH; Guo YJ; Li XX; Pan JH
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):594-8. PubMed ID: 16859961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of supramolecular polymers with alternating alpha-, beta-cyclodextrin units using conformational change induced by competitive guests.
    Miyauchi M; Harada A
    J Am Chem Soc; 2004 Sep; 126(37):11418-9. PubMed ID: 15366870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contraction of supramolecular double-threaded dimer formed by alpha-cyclodextrin with a long alkyl chain.
    Tsukagoshi S; Miyawaki A; Takashima Y; Yamaguchi H; Harada A
    Org Lett; 2007 Mar; 9(6):1053-5. PubMed ID: 17309271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separated and aligned molecular fibres in solid state self-assemblies of cyclodextrin [2]rotaxanes.
    Onagi H; Carrozzini B; Cascarano GL; Easton CJ; Edwards AJ; Lincoln SF; Rae AD
    Chemistry; 2003 Dec; 9(24):5971-7. PubMed ID: 14679509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Installation of a ratchet tooth and pawl to restrict rotation in a cyclodextrin rotaxane.
    Onagi H; Blake CJ; Easton CJ; Lincoln SF
    Chemistry; 2003 Dec; 9(24):5978-88. PubMed ID: 14679510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative rotational motion between alpha-Cyclodextrin Derivatives and a stiff axle molecule.
    Nishimura D; Oshikiri T; Takashima Y; Hashidzume A; Yamaguchi H; Harada A
    J Org Chem; 2008 Apr; 73(7):2496-502. PubMed ID: 18336039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of water spin-spin relaxation rate to probe the solvation of cyclodextrins in aqueous solutions.
    Sabadini E; do Carmo Egídio F; Fujiwara FY; Cosgrove T
    J Phys Chem B; 2008 Mar; 112(11):3328-32. PubMed ID: 18303884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin.
    Dawson RE; Lincoln SF; Easton CJ
    Chem Commun (Camb); 2008 Sep; (34):3980-2. PubMed ID: 18758599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoresponsive formation of pseudo[2]rotaxane with cyclodextrin derivatives.
    Wang Z; Takashima Y; Yamaguchi H; Harada A
    Org Lett; 2011 Aug; 13(16):4356-9. PubMed ID: 21774508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin.
    Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N
    Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bupivacaine hydrochloride complexation with some alpha- and beta-cyclodextrins studied by potentiometry with membrane electrodes.
    Kopecký F; Vojteková M; Kaclík P; Demko M; Bieliková Z
    J Pharm Pharmacol; 2004 May; 56(5):581-7. PubMed ID: 15142334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching from altro-alpha-cyclodextrin dimer to pseudo[1]rotaxane dimer through tumbling.
    Yamauchi K; Miyawaki A; Takashima Y; Yamaguchi H; Harada A
    Org Lett; 2010 Mar; 12(6):1284-6. PubMed ID: 20180513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the chiral recognition of peptide enantiomers by neutral and sulfated beta-cyclodextrin and heptakis-(2,3-di-O-acetyl)-beta-cyclodextrin using capillary electrophoresis and nuclear magnetic resonance.
    Süss F; Kahle C; Holzgrabe U; Scriba GK
    Electrophoresis; 2002 May; 23(9):1301-7. PubMed ID: 12007130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclodextrin inclusion compounds of vanadium complexes: structural characterization and catalytic sulfoxidation.
    Lippold I; Vlay K; Görls H; Plass W
    J Inorg Biochem; 2009 Apr; 103(4):480-6. PubMed ID: 19201031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical study of the complexation of pterostilbene by natural and modified cyclodextrins.
    López-Nicolás JM; Rodríguez-Bonilla P; Méndez-Cazorla L; García-Carmona F
    J Agric Food Chem; 2009 Jun; 57(12):5294-300. PubMed ID: 19459636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioseparation of dihydropyridine derivatives by means of neutral and negatively charged beta-cyclodextrin derivatives using capillary electrophoresis.
    Christians T; Holzgrabe U
    Electrophoresis; 2000 Nov; 21(17):3609-17. PubMed ID: 11271478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.