These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21182709)

  • 1. Rapid direct methods for enumeration of specific, active bacteria in water and biofilms.
    McFeters GA; Pyle BH; Lisle JT; Broadaway SC
    J Appl Microbiol; 1998 Dec; 85 Suppl 1():193S-200S. PubMed ID: 21182709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid direct methods for enumeration of specific, active bacteria in water and biofilms.
    McFeters GA; Pyle BH; Lisle JT; Broadaway SC
    Symp Ser Soc Appl Microbiol; 1999; 85(28):193S-200S. PubMed ID: 11543584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of laser scanning for the rapid and automated detection of bacteria in water samples.
    Reynolds DT; Fricker CR
    J Appl Microbiol; 1999 May; 86(5):785-95. PubMed ID: 10347873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid, direct method for enumerating respiring enterohemorrhagic Escherichia coli O157:H7 in water.
    Pyle BH; Broadaway SC; McFeters GA
    Appl Environ Microbiol; 1995 Jul; 61(7):2614-9. PubMed ID: 7618872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser scanning detection of FISH-labelled Escherichia coli from water samples.
    Lepeuple S; Delabre K; Gilouppe S; Intertaglia L; de Roubin MR
    Water Sci Technol; 2003; 47(3):123-9. PubMed ID: 12639016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid, absolute, and simultaneous quantification of specific pathogenic strain and total bacterial cells using an ultrasensitive dual-color flow cytometer.
    Yang L; Wu L; Zhu S; Long Y; Hang W; Yan X
    Anal Chem; 2010 Feb; 82(3):1109-16. PubMed ID: 20039721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid detection of Escherichia coli and enterococci in recreational water using an immunomagnetic separation/adenosine triphosphate technique.
    Bushon RN; Brady AM; Likirdopulos CA; Cireddu JV
    J Appl Microbiol; 2009 Feb; 106(2):432-41. PubMed ID: 19200311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid On-Site Monitoring of Bacteria in Freshwater Environments Using a Portable Microfluidic Counting System.
    Yamaguchi N; Fujii Y
    Biol Pharm Bull; 2020; 43(1):87-92. PubMed ID: 31902936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the ChemScan system for rapid microbiological analysis of pharmaceutical water.
    Wallner G; Tillmann D; Haberer K
    PDA J Pharm Sci Technol; 1999; 53(2):70-4. PubMed ID: 10754693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and automated detection of fluorescent total bacteria in water samples.
    Lepeuple AS; Gilouppe S; Pierlot E; De Roubin MR
    Int J Food Microbiol; 2004 May; 92(3):327-32. PubMed ID: 15145591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fecal indicator bacteria variability in samples pumped from monitoring wells.
    Kozuskanich J; Novakowski KS; Anderson BC
    Ground Water; 2011; 49(1):43-52. PubMed ID: 20497242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of active bacterial communities in a model drinking water biofilm system using 16S rRNA-based clone libraries.
    Keinänen-Toivola MM; Revetta RP; Santo Domingo JW
    FEMS Microbiol Lett; 2006 Apr; 257(2):182-8. PubMed ID: 16553851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined use of an immunomagnetic separation method and immunoblotting for the enumeration and isolation of Escherichia coli O157 in wastewaters.
    García-Aljaro C; Bonjoch X; Blanch AR
    J Appl Microbiol; 2005; 98(3):589-97. PubMed ID: 15715861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic device for bacteria detection in aqueous samples.
    Jha AK; Tripathi A; Bose A
    Environ Technol; 2011 Oct; 32(13-14):1661-7. PubMed ID: 22329157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Escherichia coli in biofilms from pipe samples and coupons in drinking water distribution networks.
    Juhna T; Birzniece D; Larsson S; Zulenkovs D; Sharipo A; Azevedo NF; Ménard-Szczebara F; Castagnet S; Féliers C; Keevil CW
    Appl Environ Microbiol; 2007 Nov; 73(22):7456-64. PubMed ID: 17720845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping bacteria on filter membranes, an innovative SERS approach.
    Gao S; Pearson B; He L
    J Microbiol Methods; 2018 Apr; 147():69-75. PubMed ID: 29551655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid detection of Escherichia coli in water using a hand-held fluorescence detector.
    Wildeboer D; Amirat L; Price RG; Abuknesha RA
    Water Res; 2010 Apr; 44(8):2621-8. PubMed ID: 20153013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria.
    Rodriguez GG; Phipps D; Ishiguro K; Ridgway HF
    Appl Environ Microbiol; 1992 Jun; 58(6):1801-8. PubMed ID: 1622256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for microbiological quality assessment in drinking water: a comparative study.
    Helmi K; Barthod F; Méheut G; Henry A; Poty F; Laurent F; Charni-Ben-Tabassi N
    J Water Health; 2015 Mar; 13(1):34-41. PubMed ID: 25719463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of E. coli O157:H7 by immunomagnetic separation coupled with fluorescence immunoassay.
    Zhu P; Shelton DR; Li S; Adams DL; Karns JS; Amstutz P; Tang CM
    Biosens Bioelectron; 2011 Dec; 30(1):337-41. PubMed ID: 22005594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.