BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 21182721)

  • 1. Cellular-resolution in vivo imaging of the feline retina using adaptive optics: preliminary results.
    Rosolen SG; Lamory B; Harms F; Sahel JA; Picaud S; LeGargasson JF
    Vet Ophthalmol; 2010 Nov; 13(6):369-76. PubMed ID: 21182721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution retinal imaging of cone-rod dystrophy.
    Wolfing JI; Chung M; Carroll J; Roorda A; Williams DR
    Ophthalmology; 2006 Jun; 113(6):1019.e1. PubMed ID: 16650474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography.
    Kurokawa K; Sasaki K; Makita S; Yamanari M; Cense B; Yasuno Y
    Opt Express; 2010 Apr; 18(8):8515-27. PubMed ID: 20588698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Canine and feline fundus photography and videography using a nonpatented 3D printed lens adapter for a smartphone.
    Espinheira Gomes F; Ledbetter E
    Vet Ophthalmol; 2019 Jan; 22(1):88-92. PubMed ID: 29749697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo high-resolution retinal imaging using adaptive optics.
    Seyedahmadi BJ; Vavvas D
    Semin Ophthalmol; 2010; 25(5-6):186-91. PubMed ID: 21090998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging of titanium:sapphire laser retinal injury by adaptive optics fundus imaging and Fourier-domain optical coherence tomography.
    Kitaguchi Y; Fujikado T; Kusaka S; Yamaguchi T; Mihashi T; Tano Y
    Am J Ophthalmol; 2009 Jul; 148(1):97-104.e2. PubMed ID: 19327747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution functional optical imaging: from the neocortex to the eye.
    Grinvald A; Bonhoeffer T; Vanzetta I; Pollack A; Aloni E; Ofri R; Nelson D
    Ophthalmol Clin North Am; 2004 Mar; 17(1):53-67. PubMed ID: 15102513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinations of techniques in imaging the retina with high resolution.
    Podoleanu AG; Rosen RB
    Prog Retin Eye Res; 2008 Jul; 27(4):464-99. PubMed ID: 18495519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive optics ophthalmoscopy.
    Roorda A; Duncan JL
    Annu Rev Vis Sci; 2015 Nov; 1():19-50. PubMed ID: 26973867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What can adaptive optics do for a scanning laser ophthalmoscope ?
    Roorda A; Garcia CA; Martin JA; Poonja S; Queener H; Romero-Borja F; Sepulveda R; Venkateswaran K; Zhang Y
    Bull Soc Belge Ophtalmol; 2006; (302):231-44. PubMed ID: 17265801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the posterior segment of the cat eye by optical coherence tomography (OCT).
    Gekeler F; Gmeiner H; Völker M; Sachs H; Messias A; Eule C; Bartz-Schmidt KU; Zrenner E; Shinoda K
    Vet Ophthalmol; 2007; 10(3):173-8. PubMed ID: 17445079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive optics fundus camera to examine localized changes in the photoreceptor layer of the fovea.
    Kitaguchi Y; Fujikado T; Bessho K; Sakaguchi H; Gomi F; Yamaguchi T; Nakazawa N; Mihashi T; Tano Y
    Ophthalmology; 2008 Oct; 115(10):1771-7. PubMed ID: 18486223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards metabolic mapping of the human retina.
    Schweitzer D; Schenke S; Hammer M; Schweitzer F; Jentsch S; Birckner E; Becker W; Bergmann A
    Microsc Res Tech; 2007 May; 70(5):410-9. PubMed ID: 17393496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous fundus imaging and optical coherence tomography of the mouse retina.
    Kocaoglu OP; Uhlhorn SR; Hernandez E; Juarez RA; Will R; Parel JM; Manns F
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1283-9. PubMed ID: 17325174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. System design considerations to improve isoplanatism for adaptive optics retinal imaging.
    Bedggood P; Metha A
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A37-47. PubMed ID: 21045889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution, in vivo retinal imaging using adaptive optics and its future role in ophthalmology.
    Doble N
    Expert Rev Med Devices; 2005 Mar; 2(2):205-16. PubMed ID: 16293057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography.
    Grieve K; Paques M; Dubois A; Sahel J; Boccara C; Le Gargasson JF
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4126-31. PubMed ID: 15505065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-of-the-art retinal optical coherence tomography.
    Drexler W; Fujimoto JG
    Prog Retin Eye Res; 2008 Jan; 27(1):45-88. PubMed ID: 18036865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy.
    Ooto S; Hangai M; Sakamoto A; Tsujikawa A; Yamashiro K; Ojima Y; Yamada Y; Mukai H; Oshima S; Inoue T; Yoshimura N
    Ophthalmology; 2010 Sep; 117(9):1800-9, 1809.e1-2. PubMed ID: 20673590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-D retinal curvature estimation.
    Chanwimaluang T; Fan G; Yen GG; Fransen SR
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):997-1005. PubMed ID: 19643714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.