BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21182989)

  • 1. Vitamin B(6) salvage enzymes: mechanism, structure and regulation.
    di Salvo ML; Contestabile R; Safo MK
    Biochim Biophys Acta; 2011 Nov; 1814(11):1597-608. PubMed ID: 21182989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyridoxal 5'-Phosphate Biosynthesis by Pyridox-(am)-ine 5'-Phosphate Oxidase: Species-Specific Features.
    Rivero M; Novo N; Medina M
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamer levels, stress response, enzyme activity, and gene regulation of Arabidopsis lines mutant in the pyridoxine/pyridoxamine 5'-phosphate oxidase (PDX3) and the pyridoxal kinase (SOS4) genes involved in the vitamin B6 salvage pathway.
    González E; Danehower D; Daub ME
    Plant Physiol; 2007 Nov; 145(3):985-96. PubMed ID: 17873088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and properties of recombinant human pyridoxine 5'-phosphate oxidase.
    Musayev FN; Di Salvo ML; Ko TP; Schirch V; Safo MK
    Protein Sci; 2003 Jul; 12(7):1455-63. PubMed ID: 12824491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Successful data recovery from oscillation photographs containing strong polycrystalline diffraction rings from an unknown small-molecule contaminant: preliminary structure solution of Salmonella typhimurium pyridoxal kinase (PdxK).
    Deka G; Kalyani JN; Benazir JF; Savithri HS; Murthy MR
    Acta Crystallogr F Struct Biol Commun; 2014 Apr; 70(Pt 4):526-9. PubMed ID: 24699755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular structure of Rv2074, a probable pyridoxine 5'-phosphate oxidase from Mycobacterium tuberculosis, at 1.6 angstroms resolution.
    Biswal BK; Au K; Cherney MM; Garen C; James MN
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Aug; 62(Pt 8):735-42. PubMed ID: 16880544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms and structures of vitamin B(6)-dependent enzymes involved in deoxy sugar biosynthesis.
    Romo AJ; Liu HW
    Biochim Biophys Acta; 2011 Nov; 1814(11):1534-47. PubMed ID: 21315852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PNPO-PLP axis senses prolonged hypoxia in macrophages by regulating lysosomal activity.
    Sekine H; Takeda H; Takeda N; Kishino A; Anzawa H; Isagawa T; Ohta N; Murakami S; Iwaki H; Kato N; Kimura S; Liu Z; Kato K; Katsuoka F; Yamamoto M; Miura F; Ito T; Takahashi M; Izumi Y; Fujita H; Yamagata H; Bamba T; Akaike T; Suzuki N; Kinoshita K; Motohashi H
    Nat Metab; 2024 Jun; 6(6):1108-1127. PubMed ID: 38822028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Design of
    Wang J; Xu X; Wei W; Song W; Wen J; Hu G; Li X; Gao C; Chen X; Liu L; Wu J
    J Agric Food Chem; 2024 Apr; ():. PubMed ID: 38602702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New reactions by pyridoxal phosphate-dependent enzymes.
    Daniel-Ivad P; Ryan KS
    Curr Opin Chem Biol; 2024 May; 81():102472. PubMed ID: 38815536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysine relay mechanism coordinates intermediate transfer in vitamin B6 biosynthesis.
    Rodrigues MJ; Windeisen V; Zhang Y; Guédez G; Weber S; Strohmeier M; Hanes JW; Royant A; Evans G; Sinning I; Ealick SE; Begley TP; Tews I
    Nat Chem Biol; 2017 Mar; 13(3):290-294. PubMed ID: 28092359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Basis for Allostery in PLP-dependent Enzymes.
    Tran JU; Brown BL
    Front Mol Biosci; 2022; 9():884281. PubMed ID: 35547395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and dynamics of the staphylococcal pyridoxal 5-phosphate synthase complex reveal transient interactions at the enzyme interface.
    Barra ALC; Ullah N; Brognaro H; Gutierrez RF; Wrenger C; Betzel C; Nascimento AS
    J Biol Chem; 2024 May; 300(6):107404. PubMed ID: 38782204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why pyridoxal phosphate could be a functional predecessor of thiamine pyrophosphate and speculations on a primordial metabolism.
    Kirschning A
    RSC Chem Biol; 2024 Jun; 5(6):508-517. PubMed ID: 38846080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomedical aspects of pyridoxal 5'-phosphate availability.
    di Salvo ML; Safo MK; Contestabile R
    Front Biosci (Elite Ed); 2012 Jan; 4(3):897-913. PubMed ID: 22201923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin B6 metabolism by human liver.
    Merrill AH; Henderson JM
    Ann N Y Acad Sci; 1990; 585():110-7. PubMed ID: 2192606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular trafficking of the pyridoxal cofactor. Implications for health and metabolic disease.
    Whittaker JW
    Arch Biochem Biophys; 2016 Feb; 592():20-6. PubMed ID: 26619753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of human pyridoxal kinase in complex with the neurotoxins, ginkgotoxin and theophylline: insights into pyridoxal kinase inhibition.
    Gandhi AK; Desai JV; Ghatge MS; di Salvo ML; Di Biase S; Danso-Danquah R; Musayev FN; Contestabile R; Schirch V; Safo MK
    PLoS One; 2012; 7(7):e40954. PubMed ID: 22879864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic mechanism and divalent metal activation of human erythrocyte pyridoxal phosphatase.
    Fonda ML; Zhang YN
    Arch Biochem Biophys; 1995 Jul; 320(2):345-52. PubMed ID: 7625842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in PROSC Disrupt Cellular Pyridoxal Phosphate Homeostasis and Cause Vitamin-B
    Darin N; Reid E; Prunetti L; Samuelsson L; Husain RA; Wilson M; El Yacoubi B; Footitt E; Chong WK; Wilson LC; Prunty H; Pope S; Heales S; Lascelles K; Champion M; Wassmer E; Veggiotti P; de Crécy-Lagard V; Mills PB; Clayton PT
    Am J Hum Genet; 2016 Dec; 99(6):1325-1337. PubMed ID: 27912044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.