BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21183203)

  • 1. Hourly predictive artificial neural network and multivariate regression trees models of Ganoderma spore concentrations in Rzeszów and Szczecin (Poland).
    Kasprzyk I; Grinn-Gofroń A; Strzelczak A; Wolski T
    Sci Total Environ; 2011 Feb; 409(5):949-56. PubMed ID: 21183203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Annual variation of fungal spores in atmosphere of Porto: 2003.
    Oliveira M; Ribeiro H; Abreu I
    Ann Agric Environ Med; 2005; 12(2):309-15. PubMed ID: 16457491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal variation of Ganoderma spore concentrations in urban and suburban districts of the city of Szczecin, Poland.
    Grinn-Gofroń A; Strzelczak A; Przestrzelska K
    Ann Agric Environ Med; 2015; 22(1):6-10. PubMed ID: 25780819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air.
    Grinn-Gofroń A; Strzelczak A
    Int J Biometeorol; 2011 Mar; 55(2):235-41. PubMed ID: 20512355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations.
    Sadyś M; Skjøth CA; Kennedy R
    Int J Biometeorol; 2016 Apr; 60(4):489-98. PubMed ID: 26266481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hourly predictive artificial neural network and multivariate regression tree models of Alternaria and Cladosporium spore concentrations in Szczecin (Poland).
    Grinn-Gofroń A; Strzelczak A
    Int J Biometeorol; 2009 Nov; 53(6):555-62. PubMed ID: 19526373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores.
    Grinn-Gofroń A; Strzelczak A; Wolski T
    Environ Pollut; 2011 Feb; 159(2):602-8. PubMed ID: 21030122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of meteorological factors on Betula, Fraxinus and Quercus pollen concentrations in the atmosphere of Lublin and Szczecin, Poland.
    Weryszko-Chmielewska E; Puc M; Piotrowska K
    Ann Agric Environ Med; 2006; 13(2):243-9. PubMed ID: 17195996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of meteorological conditions on spore plumes.
    Burch M; Levetin E
    Int J Biometeorol; 2002 Aug; 46(3):107-17. PubMed ID: 12194003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors.
    Hasnain SM; Akhter T; Waqar MA
    J Environ Monit; 2012 Mar; 14(3):1006-13. PubMed ID: 22327332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial neural network models of relationships between Alternaria spores and meteorological factors in Szczecin (Poland).
    Grinn-Gofroń A; Strzelczak A
    Int J Biometeorol; 2008 Nov; 52(8):859-68. PubMed ID: 18810504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intradiurnal variation of predominant airborne fungal spore biopollutants in the Central European urban environment.
    Ščevková J; Hrabovský M; Kováč J; Rosa S
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34603-34612. PubMed ID: 31654304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Atmospheric concentration of fungus spores in Ankara and the effect of meteorological factors in 2003 period].
    Ceter T; Pinar NM
    Mikrobiyol Bul; 2009 Oct; 43(4):627-38. PubMed ID: 20084916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki.
    Vlachogianni A; Kassomenos P; Karppinen A; Karakitsios S; Kukkonen J
    Sci Total Environ; 2011 Mar; 409(8):1559-71. PubMed ID: 21277004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal spore content of the atmosphere of the Cave of Nerja (southern Spain): diversity and origin.
    Docampo S; Trigo MM; Recio M; Melgar M; García-Sánchez J; Cabezudo B
    Sci Total Environ; 2011 Jan; 409(4):835-43. PubMed ID: 21138779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sampling height on the concentration of airborne fungal spores.
    Khattab A; Levetin E
    Ann Allergy Asthma Immunol; 2008 Nov; 101(5):529-34. PubMed ID: 19055208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survey of biological particles in the atmosphere of the Cracow center (southern Poland) in 2011. Preliminary study.
    Myszkowska D; Stepalska D; Dyga W; Bokalska-Rajba J; Czarnobilska E
    Przegl Lek; 2012; 69(12):1254-60. PubMed ID: 23750434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dew point temperature affects ascospore release of allergenic genus Leptosphaeria.
    Sadyś M; Kaczmarek J; Grinn-Gofron A; Rodinkova V; Prikhodko A; Bilous E; Strzelczak A; Herbert RJ; Jedryczka M
    Int J Biometeorol; 2018 Jun; 62(6):979-990. PubMed ID: 29417217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of artificial neural networks to forecast biological atmospheric allergens or pathogens only as Alternaria spores.
    Astray G; Rodríguez-Rajo FJ; Ferreiro-Lage JA; Fernández-González M; Jato V; Mejuto JC
    J Environ Monit; 2010 Nov; 12(11):2145-52. PubMed ID: 20922255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear and nonlinear modeling approaches for urban air quality prediction.
    Singh KP; Gupta S; Kumar A; Shukla SP
    Sci Total Environ; 2012 Jun; 426():244-55. PubMed ID: 22542239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.