These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 21183573)
1. Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus. Cohn MT; Kjelgaard P; Frees D; Penadés JR; Ingmer H Microbiology (Reading); 2011 Mar; 157(Pt 3):677-684. PubMed ID: 21183573 [TBL] [Abstract][Full Text] [Related]
2. Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. Michel A; Agerer F; Hauck CR; Herrmann M; Ullrich J; Hacker J; Ohlsen K J Bacteriol; 2006 Aug; 188(16):5783-96. PubMed ID: 16885446 [TBL] [Abstract][Full Text] [Related]
3. Structural Insights into Bacteriophage GIL01 gp7 Inhibition of Host LexA Repressor. Caveney NA; Pavlin A; Caballero G; Bahun M; Hodnik V; de Castro L; Fornelos N; Butala M; Strynadka NCJ Structure; 2019 Jul; 27(7):1094-1102.e4. PubMed ID: 31056420 [TBL] [Abstract][Full Text] [Related]
4. Single-molecule imaging of LexA degradation in Escherichia coli elucidates regulatory mechanisms and heterogeneity of the SOS response. Jones EC; Uphoff S Nat Microbiol; 2021 Aug; 6(8):981-990. PubMed ID: 34183814 [TBL] [Abstract][Full Text] [Related]
5. Computational analysis of LexA regulons in Cyanobacteria. Li S; Xu M; Su Z BMC Genomics; 2010 Sep; 11():527. PubMed ID: 20920248 [TBL] [Abstract][Full Text] [Related]
6. The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Stahlhut SG; Alqarzaee AA; Jensen C; Fisker NS; Pereira AR; Pinho MG; Thomas VC; Frees D Sci Rep; 2017 Sep; 7(1):11739. PubMed ID: 28924169 [TBL] [Abstract][Full Text] [Related]
7. The ClpCP Complex Modulates Respiratory Metabolism in Staphylococcus aureus and Is Regulated in a SrrAB-Dependent Manner. Mashruwala AA; Eilers BJ; Fuchs AL; Norambuena J; Earle CA; van de Guchte A; Tripet BP; Copié V; Boyd JM J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31109995 [TBL] [Abstract][Full Text] [Related]
8. An SOS Regulon under Control of a Noncanonical LexA-Binding Motif in the Betaproteobacteria. Sanchez-Alberola N; Campoy S; Emerson D; Barbé J; Erill I J Bacteriol; 2015 Aug; 197(16):2622-30. PubMed ID: 25986903 [TBL] [Abstract][Full Text] [Related]
10. Non-canonical LexA proteins regulate the SOS response in the Bacteroidetes. Sánchez-Osuna M; Cortés P; Lee M; Smith AT; Barbé J; Erill I Nucleic Acids Res; 2021 Nov; 49(19):11050-11066. PubMed ID: 34614190 [TBL] [Abstract][Full Text] [Related]
11. UmuDAb: An Error-Prone Polymerase Accessory Homolog Whose N-Terminal Domain Is Required for Repression of DNA Damage Inducible Gene Expression in Acinetobacter baylyi. Witkowski TA; Grice AN; Stinnett DB; Wells WK; Peterson MA; Hare JM PLoS One; 2016; 11(3):e0152013. PubMed ID: 27010837 [TBL] [Abstract][Full Text] [Related]
12. Tetramerization of the LexA repressor in solution: implications for gene regulation of the E.coli SOS system at acidic pH. Sousa FJ; Lima LM; Pacheco AB; Oliveira CL; Torriani I; Almeida DF; Foguel D; Silva JL; Mohana-Borges R J Mol Biol; 2006 Jun; 359(4):1059-74. PubMed ID: 16701697 [TBL] [Abstract][Full Text] [Related]
13. Structure of the LexA-DNA complex and implications for SOS box measurement. Zhang AP; Pigli YZ; Rice PA Nature; 2010 Aug; 466(7308):883-6. PubMed ID: 20703307 [TBL] [Abstract][Full Text] [Related]
14. Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. Jochmann N; Kurze AK; Czaja LF; Brinkrolf K; Brune I; Hüser AT; Hansmeier N; Pühler A; Borovok I; Tauch A Microbiology (Reading); 2009 May; 155(Pt 5):1459-1477. PubMed ID: 19372162 [TBL] [Abstract][Full Text] [Related]
15. Global virulence regulation in Staphylococcus aureus: pinpointing the roles of ClpP and ClpX in the sar/agr regulatory network. Frees D; Sørensen K; Ingmer H Infect Immun; 2005 Dec; 73(12):8100-8. PubMed ID: 16299304 [TBL] [Abstract][Full Text] [Related]
16. Regulation of host hemoglobin binding by the Staphylococcus aureus Clp proteolytic system. Farrand AJ; Reniere ML; Ingmer H; Frees D; Skaar EP J Bacteriol; 2013 Nov; 195(22):5041-50. PubMed ID: 23995637 [TBL] [Abstract][Full Text] [Related]
17. Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network. Culyba MJ; Kubiak JM; Mo CY; Goulian M; Kohli RM PLoS Genet; 2018 Jun; 14(6):e1007405. PubMed ID: 29856734 [TBL] [Abstract][Full Text] [Related]
18. Heat and DNA damage induction of the LexA-like regulator HdiR from Lactococcus lactis is mediated by RecA and ClpP. Savijoki K; Ingmer H; Frees D; Vogensen FK; Palva A; Varmanen P Mol Microbiol; 2003 Oct; 50(2):609-21. PubMed ID: 14617183 [TBL] [Abstract][Full Text] [Related]
19. The Streptococcus mutans IrvR repressor is a CI-like regulator that functions through autocleavage and Clp-dependent proteolysis. Niu G; Okinaga T; Qi F; Merritt J J Bacteriol; 2010 Mar; 192(6):1586-95. PubMed ID: 20038591 [TBL] [Abstract][Full Text] [Related]
20. LexA protein of cyanobacterium Anabaena sp. strain PCC7120 exhibits in vitro pH-dependent and RecA-independent autoproteolytic activity. Kumar A; Kirti A; Rajaram H Int J Biochem Cell Biol; 2015 Feb; 59():84-93. PubMed ID: 25523083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]