BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21183720)

  • 1. N-terminal domain of human Hsp90 triggers binding to the cochaperone p23.
    Karagöz GE; Duarte AM; Ippel H; Uetrecht C; Sinnige T; van Rosmalen M; Hausmann J; Heck AJ; Boelens R; Rüdiger SG
    Proc Natl Acad Sci U S A; 2011 Jan; 108(2):580-5. PubMed ID: 21183720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 'active life' of Hsp90 complexes.
    Prodromou C
    Biochim Biophys Acta; 2012 Mar; 1823(3):614-23. PubMed ID: 21840346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochaperones convey the energy of ATP hydrolysis for directional action of Hsp90.
    Vollmar L; Schimpf J; Hermann B; Hugel T
    Nat Commun; 2024 Jan; 15(1):569. PubMed ID: 38233436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of the key residue W320 responsible for Hsp90 conformational change.
    Peng S; Matts RL; Deng J
    J Biomol Struct Dyn; 2023 Nov; 41(19):9745-9755. PubMed ID: 36373326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-terminal domain dimerization in yeast Hsp90 is moderately modulated by the other domains.
    Oranges M; Giannoulis A; Vanyushkina A; Sirkis YF; Dalaloyan A; Unger T; Su XC; Sharon M; Goldfarb D
    Biophys J; 2024 Jan; 123(2):172-183. PubMed ID: 38071428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET Assays for the Identification of
    Kohlmann P; Krylov SN; Marchand P; Jose J
    Pharmaceuticals (Basel); 2024 Apr; 17(4):. PubMed ID: 38675476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An HSP90 cochaperone Ids2 maintains the stability of mitochondrial DNA and ATP synthase.
    Jiang PH; Hou CY; Teng SC
    BMC Biol; 2021 Nov; 19(1):242. PubMed ID: 34763695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure of the Hop TPR2A domain and investigation of target druggability by NMR, biochemical and in silico approaches.
    Darby JF; Vidler LR; Simpson PJ; Al-Lazikani B; Matthews SJ; Sharp SY; Pearl LH; Hoelder S; Workman P
    Sci Rep; 2020 Sep; 10(1):16000. PubMed ID: 32994435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the dynamic chaperoning of disordered clients by Hsp90.
    Qu X; Zhao S; Wan C; Zhu L; Ji T; Rossi P; Wang J; Kalodimos CG; Wang C; Xu W; Huang C
    Nat Struct Mol Biol; 2024 Jun; ():. PubMed ID: 38890550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The p23 co-chaperone is a succinate-activated COX-2 transcription factor in lung adenocarcinoma tumorigenesis.
    Yu Z; Peng Y; Gao J; Zhou M; Shi L; Zhao F; Wang C; Tian X; Feng L; Huo X; Zhang B; Liu M; Fang D; Ma X
    Sci Adv; 2023 Jun; 9(26):eade0387. PubMed ID: 37390202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective inhibition of hsp90 paralogs: Structure and binding studies uncover the role of helix 1 in Grp94-selective ligand binding.
    Que NLS; Seidler PM; Aw WJ; Chiosis G; Gewirth DT
    bioRxiv; 2023 Aug; ():. PubMed ID: 37577523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A network of its own: the unique interactome of the Hsp90 cochaperone, Sba1/p23.
    Prince T; Neckers L
    Mol Cell; 2011 Jul; 43(2):159-60. PubMed ID: 21777805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular insights into the interaction of Hsp90 with allosteric inhibitors targeting the C-terminal domain.
    Kumar Mv V; Ebna Noor R; Davis RE; Zhang Z; Sipavicius E; Keramisanou D; Blagg BSJ; Gelis I
    Medchemcomm; 2018 Aug; 9(8):1323-1331. PubMed ID: 30151087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hsp90 shapes adaptation by controlling the fitness consequences of regulatory variation.
    Jakobson CM; Aguilar-Rodríguez J; Jarosz DF
    bioRxiv; 2023 Nov; ():. PubMed ID: 37961536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hsp90-Tau complex reveals molecular basis for specificity in chaperone action.
    Karagöz GE; Duarte AM; Akoury E; Ippel H; Biernat J; Morán Luengo T; Radli M; Didenko T; Nordhues BA; Veprintsev DB; Dickey CA; Mandelkow E; Zweckstetter M; Boelens R; Madl T; Rüdiger SG
    Cell; 2014 Feb; 156(5):963-74. PubMed ID: 24581495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, function and regulation of the hsp90 machinery.
    Li J; Buchner J
    Biomed J; 2013; 36(3):106-17. PubMed ID: 23806880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hsp90: structure and function.
    Jackson SE
    Top Curr Chem; 2013; 328():155-240. PubMed ID: 22955504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone.
    Street TO; Lavery LA; Agard DA
    Mol Cell; 2011 Apr; 42(1):96-105. PubMed ID: 21474071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dynamic view of ATP-coupled functioning cycle of Hsp90 N-terminal domain.
    Zhang H; Zhou C; Chen W; Xu Y; Shi Y; Wen Y; Zhang N
    Sci Rep; 2015 Apr; 5():9542. PubMed ID: 25867902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cucurbitacin D Is a Disruptor of the HSP90 Chaperone Machinery.
    Hall JA; Seedarala S; Rice N; Kopel L; Halaweish F; Blagg BS
    J Nat Prod; 2015 Apr; 78(4):873-9. PubMed ID: 25756299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.