These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21183971)

  • 1. Imaging in real-time with FRET the redox response of tumorigenic cells to glutathione perturbations in a microscale flow.
    Lin C; Kolossov VL; Tsvid G; Trump L; Henry JJ; Henderson JL; Rund LA; Kenis PJ; Schook LB; Gaskins HR; Timp G
    Integr Biol (Camb); 2011 Mar; 3(3):208-17. PubMed ID: 21183971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of glutathione synthesis distinctly alters mitochondrial and cytosolic redox poise.
    Kolossov VL; Hanafin WP; Beaudoin JN; Bica DE; DiLiberto SJ; Kenis PJ; Gaskins HR
    Exp Biol Med (Maywood); 2014 Apr; 239(4):394-403. PubMed ID: 24586100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of mild intracellular redox imbalance inhibits proliferation of CaCo-2 cells.
    Noda T; Iwakiri R; Fujimoto K; Aw TY
    FASEB J; 2001 Oct; 15(12):2131-9. PubMed ID: 11641239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of glutathione-related enzymes augments LPS-mediated cytokine biosynthesis: involvement of an IkappaB/NF-kappaB-sensitive pathway in the alveolar epithelium.
    Haddad JJ; Safieh-Garabedian B; Saadé NE; Lauterbach R
    Int Immunopharmacol; 2002 Oct; 2(11):1567-83. PubMed ID: 12433058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NO-induced oxidative stress and glutathione metabolism in rodent and human cells.
    Luperchio S; Tamir S; Tannenbaum SR
    Free Radic Biol Med; 1996; 21(4):513-9. PubMed ID: 8886802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Förster resonance energy transfer-based sensor targeting endoplasmic reticulum reveals highly oxidative environment.
    Kolossov VL; Leslie MT; Chatterjee A; Sheehan BM; Kenis PJ; Gaskins HR
    Exp Biol Med (Maywood); 2012 Jun; 237(6):652-62. PubMed ID: 22715429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation response of cells during altered protein thiol redox.
    Biaglow JE; Ayene IS; Koch CJ; Donahue J; Stamato TD; Mieyal JJ; Tuttle SW
    Radiat Res; 2003 Apr; 159(4):484-94. PubMed ID: 12643793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrasting effects of thiol-modulating agents on endothelial NO bioactivity.
    Huang A; Xiao H; Samii JM; Vita JA; Keaney JF
    Am J Physiol Cell Physiol; 2001 Aug; 281(2):C719-25. PubMed ID: 11443071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione oxidation and embryotoxicity elicited by diamide in the developing rat conceptus in vitro.
    Hiranruengchok R; Harris C
    Toxicol Appl Pharmacol; 1993 May; 120(1):62-71. PubMed ID: 8511783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide.
    Obin M; Shang F; Gong X; Handelman G; Blumberg J; Taylor A
    FASEB J; 1998 May; 12(7):561-9. PubMed ID: 9576483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring dynamic changes in cAMP using fluorescence resonance energy transfer.
    Evellin S; Mongillo M; Terrin A; Lissandron V; Zaccolo M
    Methods Mol Biol; 2004; 284():259-70. PubMed ID: 15173622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The redox state of the glutathione/glutathione disulfide couple mediates intracellular arginase activation in HCT-116 colon cancer cells.
    Iyamu EW
    Dig Dis Sci; 2010 Sep; 55(9):2520-8. PubMed ID: 19997976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-sensitive YFP sensors for monitoring dynamic compartment-specific glutathione redox state.
    Banach-Latapy A; He T; Dardalhon M; Vernis L; Chanet R; Huang ME
    Free Radic Biol Med; 2013 Dec; 65():436-445. PubMed ID: 23891676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular reduction of selenite into glutathione peroxidase. Evidence for involvement of NADPH and not glutathione as the reductant.
    Bhamre S; Nuzzo RL; Whitin JC; Olshen RA; Cohen HJ
    Mol Cell Biochem; 2000 Aug; 211(1-2):9-17. PubMed ID: 11055542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biphasic lindane-induced oxidation of glutathione and inhibition of gap junctions in myometrial cells.
    Caruso RL; Upham BL; Harris C; Trosko JE
    Toxicol Sci; 2005 Aug; 86(2):417-26. PubMed ID: 15901910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox control of K+ channel remodeling in rat ventricle.
    Li X; Li S; Xu Z; Lou MF; Anding P; Liu D; Roy SK; Rozanski GJ
    J Mol Cell Cardiol; 2006 Mar; 40(3):339-49. PubMed ID: 16288907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering redox-sensitive linkers for genetically encoded FRET-based biosensors.
    Kolossov VL; Spring BQ; Sokolowski A; Conour JE; Clegg RM; Kenis PJ; Gaskins HR
    Exp Biol Med (Maywood); 2008 Feb; 233(2):238-48. PubMed ID: 18222979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione redox cycle-driven recovery of reduced glutathione after oxidation by tertiary-butyl hydroperoxide in preimplantation mouse embryos.
    Gardiner CS; Reed DJ
    Arch Biochem Biophys; 1995 Aug; 321(1):6-12. PubMed ID: 7639536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbamoylation of glutathione reductase by N,N-bis(2-chloroethyl)-N- nitrosourea associated with inhibition of multidrug resistance protein (MRP) function.
    Vanhoefer U; Yin MB; Harstrick A; Seeber S; Rustum YM
    Biochem Pharmacol; 1997 Mar; 53(6):801-9. PubMed ID: 9113101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schisandrin B-induced increase in cellular glutathione level and protection against oxidant injury are mediated by the enhancement of glutathione synthesis and regeneration in AML12 and H9c2 cells.
    Chiu PY; Ko KM
    Biofactors; 2006; 26(4):221-30. PubMed ID: 17119269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.