These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21184050)

  • 1. An analysis of sequence variability in eight genes putatively involved in drought response in sunflower (Helianthus annuus L.).
    Giordani T; Buti M; Natali L; Pugliesi C; Cattonaro F; Morgante M; Cavallini A
    Theor Appl Genet; 2011 Apr; 122(6):1039-49. PubMed ID: 21184050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence variability of a dehydrin gene within Helianthus annuus.
    Natali L; Giordani T; Cavallini A
    Theor Appl Genet; 2003 Mar; 106(5):811-8. PubMed ID: 12647054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gene-phenotype network based on genetic variability for drought responses reveals key physiological processes in controlled and natural environments.
    Rengel D; Arribat S; Maury P; Martin-Magniette ML; Hourlier T; Laporte M; Varès D; Carrère S; Grieu P; Balzergue S; Gouzy J; Vincourt P; Langlade NB
    PLoS One; 2012; 7(10):e45249. PubMed ID: 23056196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.).
    Poormohammad Kiani S; Grieu P; Maury P; Hewezi T; Gentzbittel L; Sarrafi A
    Theor Appl Genet; 2007 Jan; 114(2):193-207. PubMed ID: 17103138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes.
    Dey A; Samanta MK; Gayen S; Sen SK; Maiti MK
    PLoS One; 2016; 11(3):e0150763. PubMed ID: 26959651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of a dehydrin gene during embryo development and drought stress in ABA-deficient mutants of sunflower (Helianthus annuus L.).
    Giordani T; Natali L; D'Ercole A; Pugliesi C; Fambrini M; Vernieri P; Vitagliano C; Cavallini A
    Plant Mol Biol; 1999 Mar; 39(4):739-48. PubMed ID: 10350088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and expression of water stress- and abscisic acid-regulated genes in a drought-tolerant sunflower genotype.
    Ouvrard O; Cellier F; Ferrare K; Tousch D; Lamaze T; Dupuis JM; Casse-Delbart F
    Plant Mol Biol; 1996 Jul; 31(4):819-29. PubMed ID: 8806412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of a dehydrin encoding gene and its phylogenetic utility in Helianthus.
    Giordani T; Natali L; Cavallini A
    Theor Appl Genet; 2003 Jul; 107(2):316-25. PubMed ID: 12709785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, allelic diversity and selection of Asr genes, candidate for drought tolerance, in Oryza sativa L. and wild relatives.
    Philippe R; Courtois B; McNally KL; Mournet P; El-Malki R; Le Paslier MC; Fabre D; Billot C; Brunel D; Glaszmann JC; This D
    Theor Appl Genet; 2010 Aug; 121(4):769-87. PubMed ID: 20454772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Accumulation of dehydrin transcripts correlates with tolerance.
    Cellier F; Conéjéro G; Breitler JC; Casse F
    Plant Physiol; 1998 Jan; 116(1):319-28. PubMed ID: 9499218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.).
    Moschen S; Di Rienzo JA; Higgins J; Tohge T; Watanabe M; González S; Rivarola M; García-García F; Dopazo J; Hopp HE; Hoefgen R; Fernie AR; Paniego N; Fernández P; Heinz RA
    Plant Mol Biol; 2017 Jul; 94(4-5):549-564. PubMed ID: 28639116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L.
    González-Martínez SC; Ersoz E; Brown GR; Wheeler NC; Neale DB
    Genetics; 2006 Mar; 172(3):1915-26. PubMed ID: 16387885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis.
    Fernandez P; Di Rienzo J; Fernandez L; Hopp HE; Paniego N; Heinz RA
    BMC Plant Biol; 2008 Jan; 8():11. PubMed ID: 18221554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular analysis of a sunflower gene encoding an homologous of the B subunit of a CAAT binding factor.
    Salvini M; Sani E; Fambrini M; Pistelli L; Pucciariello C; Pugliesi C
    Mol Biol Rep; 2012 Jun; 39(6):6449-65. PubMed ID: 22359114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Polymorphism among RFL-PPR homologs in sunflower (Helianthus annuus L.) lines with varying ability for the suppression of the cytoplasmic male sterility phenotype].
    Anisimova IN; Alpatieva NV; Rozhkova VT; Kuznetsova EB; Pinaev AG; Gavrilova VA
    Genetika; 2014 Jul; 50(7):814-24. PubMed ID: 25720139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased growth in sunflower correlates with reduced defences and altered gene expression in response to biotic and abiotic stress.
    Mayrose M; Kane NC; Mayrose I; Dlugosch KM; Rieseberg LH
    Mol Ecol; 2011 Nov; 20(22):4683-94. PubMed ID: 21988641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging physiological and evolutionary time-scales in a gene regulatory network.
    Marchand G; Huynh-Thu VA; Kane NC; Arribat S; Varès D; Rengel D; Balzergue S; Rieseberg LH; Vincourt P; Geurts P; Vignes M; Langlade NB
    New Phytol; 2014 Jul; 203(2):685-696. PubMed ID: 24786523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. γ-Aminobutyric acid (GABA) mitigates drought and heat stress in sunflower (Helianthus annuus L.) by regulating its physiological, biochemical and molecular pathways.
    Abdel Razik ES; Alharbi BM; Pirzadah TB; Alnusairi GSH; Soliman MH; Hakeem KR
    Physiol Plant; 2021 Jun; 172(2):505-527. PubMed ID: 32979274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning, phylogenetic analysis, and expression patterns of LATERAL SUPPRESSOR-LIKE and REGULATOR OF AXILLARY MERISTEM FORMATION-LIKE genes in sunflower (Helianthus annuus L.).
    Fambrini M; Salvini M; Pugliesi C
    Dev Genes Evol; 2017 Mar; 227(2):159-170. PubMed ID: 28035495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of QTL mapping for germination and seedling response to drought stress in sunflower (
    Shi H; Wu Y; Yi L; Hu H; Su F; Wang Y; Li D; Hou J
    PeerJ; 2023; 11():e15275. PubMed ID: 37159834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.