BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21184094)

  • 21. A rapid decrease in temperature induces latewood formation in artificially reactivated cambium of conifer stems.
    Begum S; Nakaba S; Yamagishi Y; Yamane K; Islam MA; Oribe Y; Ko JH; Jin HO; Funada R
    Ann Bot; 2012 Sep; 110(4):875-85. PubMed ID: 22843340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling of the hygroelastic behaviour of normal and compression wood tracheids.
    Joffre T; Neagu RC; Bardage SL; Gamstedt EK
    J Struct Biol; 2014 Jan; 185(1):89-98. PubMed ID: 24184469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Topochemical and morphological characterization of wood cell wall treated with the ionic liquid, 1-ethylpyridinium bromide.
    Kanbayashi T; Miyafuji H
    Planta; 2015 Sep; 242(3):509-18. PubMed ID: 25556160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of ionic liquid treatment on the ultrastructural and topochemical features of compression wood in Japanese cedar (Cryptomeria japonica).
    Kanbayashi T; Miyafuji H
    Sci Rep; 2016 Jul; 6():30147. PubMed ID: 27426470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into asynchronous changes of cell wall polymers accumulated in different cell types during conifer xylem differentiation.
    Wang J; Jia H; Daniel G; Gao J; Jiang X; Ma L; Yue S; Guo J; Yin Y
    Carbohydr Polym; 2023 Sep; 316():121076. PubMed ID: 37321750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunolocalization of β-(1-4)-D-galactan, xyloglucans and xylans in the reaction xylem fibres of Leucaena leucocephala (Lam.) de Wit.
    Pramod S; Rajput KS; Rao KS
    Plant Physiol Biochem; 2019 Sep; 142():217-223. PubMed ID: 31310944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Xylem parenchyma cell walls lack a gravitropic response in conifer compression wood.
    Donaldson LA; Nanayakkara B; Radotić K; Djikanovic-Golubović D; Mitrović A; Bogdanović Pristov J; Simonović Radosavljević J; Kalauzi A
    Planta; 2015 Dec; 242(6):1413-24. PubMed ID: 26287313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of Micropore Distribution in Cell Walls of Softwood and Hardwood Xylem.
    Donaldson LA; Cairns M; Hill SJ
    Plant Physiol; 2018 Nov; 178(3):1142-1153. PubMed ID: 30217826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Location and characterization of lignin in tracheid cell walls of radiata pine (Pinus radiata D. Don) compression woods.
    Zhang M; Lapierre C; Nouxman NL; Nieuwoudt MK; Smith BG; Chavan RR; McArdle BH; Harris PJ
    Plant Physiol Biochem; 2017 Sep; 118():187-198. PubMed ID: 28646704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stem-righting mechanism in gymnosperm trees deduced from limitations in compression wood development.
    Yamashita S; Yoshida M; Takayama S; Okuyama T
    Ann Bot; 2007 Mar; 99(3):487-93. PubMed ID: 17218339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the ultrastructural localization and biosynthesis of beta(1,4)-galactan in Pinus radiata compression wood.
    Mast SW; Donaldson L; Torr K; Phillips L; Flint H; West M; Strabala TJ; Wagner A
    Plant Physiol; 2009 Jun; 150(2):573-83. PubMed ID: 19346442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diurnal difference in the amount of immunogold-labeled glucomannans detected with field emission scanning electron microscopy at the innermost surface of developing secondary walls of differentiating conifer tracheids.
    Hosoo Y; Yoshida M; Imai T; Okuyama T
    Planta; 2002 Oct; 215(6):1006-12. PubMed ID: 12355161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dimensional Changes of Tracheids during Drying of Radiata Pine (Pinus radiata D. Don) Compression Woods: A Study Using Variable-Pressure Scanning Electron Microscopy (VP-SEM).
    Zhang M; Smith BG; McArdle BH; Chavan RR; James BJ; Harris PJ
    Plants (Basel); 2018 Feb; 7(1):. PubMed ID: 29495536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution.
    Donaldson L; Radotić K; Kalauzi A; Djikanović D; Jeremić M
    J Struct Biol; 2010 Jan; 169(1):106-15. PubMed ID: 19747548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mechanism of xylans removal during hydrothermal pretreatment of poplar fibers investigated by immunogold labeling.
    Ma J; Ji Z; Chen JC; Zhou X; Kim YS; Xu F
    Planta; 2015 Jul; 242(1):327-37. PubMed ID: 25926363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. G-fibre cell wall development in willow stems during tension wood induction.
    Gritsch C; Wan Y; Mitchell RA; Shewry PR; Hanley SJ; Karp A
    J Exp Bot; 2015 Oct; 66(20):6447-59. PubMed ID: 26220085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Safranine fluorescent staining of wood cell walls.
    Bond J; Donaldson L; Hill S; Hitchcock K
    Biotech Histochem; 2008 Jun; 83(3-4):161-71. PubMed ID: 18802812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of Lignin, Hemicellulose, and Arabinogalactan Protein in Hemp Phloem Fibers.
    Kiyoto S; Yoshinaga A; Fernandez-Tendero E; Day A; Chabbert B; Takabe K
    Microsc Microanal; 2018 Aug; 24(4):442-452. PubMed ID: 30175708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal water deficit and wood formation in Cryptomeria japonica.
    Abe H; Nakai T; Utsumi Y; Kagawa A
    Tree Physiol; 2003 Aug; 23(12):859-63. PubMed ID: 12865252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Secondary cell wall deposition in developing secondary xylem of poplar.
    Kaneda M; Rensing K; Samuels L
    J Integr Plant Biol; 2010 Feb; 52(2):234-43. PubMed ID: 20377684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.