BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 21184128)

  • 21. Molecular genetics and epigenetics of the cytochrome P450 gene family and its relevance for cancer risk and treatment.
    Rodriguez-Antona C; Gomez A; Karlgren M; Sim SC; Ingelman-Sundberg M
    Hum Genet; 2010 Jan; 127(1):1-17. PubMed ID: 19823875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nuclear receptor-mediated transcriptional regulation in Phase I, II, and III xenobiotic metabolizing systems.
    Nakata K; Tanaka Y; Nakano T; Adachi T; Tanaka H; Kaminuma T; Ishikawa T
    Drug Metab Pharmacokinet; 2006 Dec; 21(6):437-57. PubMed ID: 17220560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytochromes P450 and metabolism of xenobiotics.
    Anzenbacher P; Anzenbacherová E
    Cell Mol Life Sci; 2001 May; 58(5-6):737-47. PubMed ID: 11437235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of gene knockout mice in understanding the mechanisms of chemical toxicity and carcinogenesis.
    Gonzalez FJ; Kimura S
    Cancer Lett; 1999 Sep; 143(2):199-204. PubMed ID: 10503904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histone Methyltransferase G9a Regulates Expression of Nuclear Receptors and Cytochrome P450 Enzymes in HepaRG Cells at Basal Level and in Fatty Acid Induced Steatosis.
    Pande P; Zhong XB; Ku WW
    Drug Metab Dispos; 2020 Dec; 48(12):1321-1329. PubMed ID: 33077425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel cytochrome P450 mono-oxygenase from Streptomyces platensis resembles activities of human drug metabolizing P450s.
    Worsch A; Eggimann FK; Girhard M; von Bühler CJ; Tieves F; Czaja R; Vogel A; Grumaz C; Sohn K; Lütz S; Kittelmann M; Urlacher VB
    Biotechnol Bioeng; 2018 Sep; 115(9):2156-2166. PubMed ID: 29943426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular biology of human xenobiotic-metabolizing cytochromes P450: role of vaccinia virus cDNA expression in evaluating catalytic function.
    Gonzalez FJ
    Toxicology; 1993 Oct; 82(1-3):77-88. PubMed ID: 8236283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Polymorphism and the level of P450 gene expression in xenobiotic metabolism].
    Niemira M; Wiśniewska A; Mazerska Z
    Postepy Biochem; 2009; 55(3):279-89. PubMed ID: 19928584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel extrahepatic cytochrome P450s.
    Karlgren M; Miura S; Ingelman-Sundberg M
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):57-61. PubMed ID: 15987645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential role of epigenetic mechanisms in the regulation of drug metabolism and transport.
    Ingelman-Sundberg M; Zhong XB; Hankinson O; Beedanagari S; Yu AM; Peng L; Osawa Y
    Drug Metab Dispos; 2013 Oct; 41(10):1725-31. PubMed ID: 23918665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tumoral expression of drug and xenobiotic metabolizing enzymes in breast cancer patients of different ethnicities with implications to personalized medicine.
    Li Y; Steppi A; Zhou Y; Mao F; Miller PC; He MM; Zhao T; Sun Q; Zhang J
    Sci Rep; 2017 Jul; 7(1):4747. PubMed ID: 28684774
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytochrome P450 and xenobiotic receptor humanized mice.
    Gonzalez FJ; Yu AM
    Annu Rev Pharmacol Toxicol; 2006; 46():41-64. PubMed ID: 16402898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms.
    Ingelman-Sundberg M
    Naunyn Schmiedebergs Arch Pharmacol; 2004 Jan; 369(1):89-104. PubMed ID: 14574440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Some aspects of interindividual variations in the metabolism of xenobiotics.
    Tamási V; Vereczkey L; Falus A; Monostory K
    Inflamm Res; 2003 Aug; 52(8):322-33. PubMed ID: 14504670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Post-translational and post-transcriptional modifications of pregnane X receptor (PXR) in regulation of the cytochrome P450 superfamily.
    Smutny T; Mani S; Pavek P
    Curr Drug Metab; 2013 Dec; 14(10):1059-69. PubMed ID: 24329114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MicroRNAs from biology to future pharmacotherapy: regulation of cytochrome P450s and nuclear receptors.
    Nakajima M; Yokoi T
    Pharmacol Ther; 2011 Sep; 131(3):330-7. PubMed ID: 21565218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of cytochrome P450 in tumour development and progression and its potential in therapy.
    Murray GI
    J Pathol; 2000 Dec; 192(4):419-26. PubMed ID: 11113857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytochrome P450 humanised mice.
    Gonzalez FJ
    Hum Genomics; 2004 May; 1(4):300-6. PubMed ID: 15588489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extending the capabilities of nature's most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s.
    Gillam EM
    Arch Biochem Biophys; 2007 Aug; 464(2):176-86. PubMed ID: 17537393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting the cytochrome P450 mediated metabolism of xenobiotics.
    Korzekwa KR; Jones JP
    Pharmacogenetics; 1993 Feb; 3(1):1-18. PubMed ID: 8485584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.