BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 21184216)

  • 41. Contribution of the RsaL global regulator to Pseudomonas aeruginosa virulence and biofilm formation.
    Rampioni G; Schuster M; Greenberg EP; Zennaro E; Leoni L
    FEMS Microbiol Lett; 2009 Dec; 301(2):210-7. PubMed ID: 19878323
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nitrite reductase NirS is required for type III secretion system expression and virulence in the human monocyte cell line THP-1 by Pseudomonas aeruginosa.
    Van Alst NE; Wellington M; Clark VL; Haidaris CG; Iglewski BH
    Infect Immun; 2009 Oct; 77(10):4446-54. PubMed ID: 19651860
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Potassium and sodium transporters of Pseudomonas aeruginosa regulate virulence to barley.
    Ueda A; Wood TK
    Appl Microbiol Biotechnol; 2008 Jul; 79(5):843-58. PubMed ID: 18481058
    [TBL] [Abstract][Full Text] [Related]  

  • 44. INHIBITION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA BY DICLOFENAC SODIUM.
    Abbas HA
    Roum Arch Microbiol Immunol; 2015; 74(3-4):79-85. PubMed ID: 27328521
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis and Biological Evaluation of Coumarins Derivatives as Potential Inhibitors of the Production of Pseudomonas aeruginosa Virulence Factor Pyocyanin.
    da S M Forezi L; Froes TQ; Cardoso MFC; de Oliveira Maciel CA; Nicastro GG; Baldini RL; Costa DCS; Ferreira VF; Castilho MS; de C da Silva F
    Curr Top Med Chem; 2018; 18(2):149-156. PubMed ID: 29595112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation.
    Wilhelm S; Gdynia A; Tielen P; Rosenau F; Jaeger KE
    J Bacteriol; 2007 Sep; 189(18):6695-703. PubMed ID: 17631636
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa.
    Rosenau F; Isenhardt S; Gdynia A; Tielker D; Schmidt E; Tielen P; Schobert M; Jahn D; Wilhelm S; Jaeger KE
    FEMS Microbiol Lett; 2010 Aug; 309(1):25-34. PubMed ID: 20546309
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of rhamnolipids by Pseudomonas aeruginosa.
    Soberón-Chávez G; Lépine F; Déziel E
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):718-25. PubMed ID: 16160828
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Homogentisate 1-2-Dioxygenase Downregulation in the Chronic Persistence of Pseudomonas aeruginosa Australian Epidemic Strain-1 in the CF Lung.
    Harmer CJ; Wynn M; Pinto R; Cordwell S; Rose BR; Harbour C; Triccas JA; Manos J
    PLoS One; 2015; 10(8):e0134229. PubMed ID: 26252386
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reduced expression of virulence factors in multidrug-resistant Pseudomonas aeruginosa strains.
    Deptuła A; Gospodarek E
    Arch Microbiol; 2010 Jan; 192(1):79-84. PubMed ID: 19960337
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans.
    Milivojevic D; Šumonja N; Medic S; Pavic A; Moric I; Vasiljevic B; Senerovic L; Nikodinovic-Runic J
    Pathog Dis; 2018 Jun; 76(4):. PubMed ID: 29684116
    [TBL] [Abstract][Full Text] [Related]  

  • 52. De Novo Synthesis and Functional Analysis of Polyphosphate-Loaded Poly(Ethylene) Glycol Hydrogel Nanoparticles Targeting Pyocyanin and Pyoverdin Production in Pseudomonas aeruginosa as a Model Intestinal Pathogen.
    Yin Y; Papavasiliou G; Zaborina OY; Alverdy JC; Teymour F
    Ann Biomed Eng; 2017 Apr; 45(4):1058-1068. PubMed ID: 27761766
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mutation of retS, encoding a putative hybrid two-component regulatory protein in Pseudomonas aeruginosa, attenuates multiple virulence mechanisms.
    Zolfaghar I; Angus AA; Kang PJ; To A; Evans DJ; Fleiszig SM
    Microbes Infect; 2005 Oct; 7(13):1305-16. PubMed ID: 16027020
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of the Plasmid-Based
    Tian L; Yang Z; Wang J; Liu J
    Microbiol Spectr; 2023 Jun; 11(3):e0133823. PubMed ID: 37191499
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of swarming motility of Pseudomonas aeruginosa by branched-chain fatty acids.
    Inoue T; Shingaki R; Fukui K
    FEMS Microbiol Lett; 2008 Apr; 281(1):81-6. PubMed ID: 18318842
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pathogenesis of plant-associated Pseudomonas aeruginosa in Caenorhabditis elegans model.
    Ambreetha S; Balachandar D
    BMC Microbiol; 2022 Nov; 22(1):269. PubMed ID: 36348297
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alteration of low-temperature susceptibility of the cyanobacterium Synechococcus sp. PCC 7002 by genetic manipulation of membrane lipid unsaturation.
    Sakamoto T; Shen G; Higashi S; Murata N; Bryant DA
    Arch Microbiol; 1998 Jan; 169(1):20-8. PubMed ID: 9396831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model.
    Mahajan-Miklos S; Tan MW; Rahme LG; Ausubel FM
    Cell; 1999 Jan; 96(1):47-56. PubMed ID: 9989496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The two-component sensor KinB acts as a phosphatase to regulate Pseudomonas aeruginosa Virulence.
    Chand NS; Clatworthy AE; Hung DT
    J Bacteriol; 2012 Dec; 194(23):6537-47. PubMed ID: 23024348
    [TBL] [Abstract][Full Text] [Related]  

  • 60. From worms to targeting virulence factors.
    Melander RJ; Melander C
    Chem Biol; 2015 Apr; 22(4):436-437. PubMed ID: 25910240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.