BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21184230)

  • 1. Production of marker-free disease-resistant potato using isopentenyl transferase gene as a positive selection marker.
    Khan RS; Ntui VO; Chin DP; Nakamura I; Mii M
    Plant Cell Rep; 2011 Apr; 30(4):587-97. PubMed ID: 21184230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of disease-resistant marker-free tomato by R/RS site-specific recombination.
    Khan RS; Nakamura I; Mii M
    Plant Cell Rep; 2011 Jun; 30(6):1041-53. PubMed ID: 21293863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of selectable marker-free transgenic eggplant resistant to Alternaria solani using the R/RS site-specific recombination system.
    Darwish NA; Khan RS; Ntui VO; Nakamura I; Mii M
    Plant Cell Rep; 2014 Mar; 33(3):411-21. PubMed ID: 24311155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding chitinase and wasabi defensin genes.
    Khan RS; Darwish NA; Khattak B; Ntui VO; Kong K; Shimomae K; Nakamura I; Mii M
    Mol Biotechnol; 2014 Sep; 56(9):814-23. PubMed ID: 24802621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable integration and expression of wasabi defensin gene in "Egusi" melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot.
    Ntui VO; Thirukkumaran G; Azadi P; Khan RS; Nakamura I; Mii M
    Plant Cell Rep; 2010 Sep; 29(9):943-54. PubMed ID: 20552202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of marker-free transgenic Nierembergia caerulea using MAT vector system.
    Khan RS; Chin DP; Nakamura I; Mii M
    Plant Cell Rep; 2006 Sep; 25(9):914-9. PubMed ID: 16604375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering resistance to PVY in different potato cultivars in a marker-free transformation system using a 'shooter mutant' A. tumefaciens.
    Bukovinszki A; Divéki Z; Csányi M; Palkovics L; Balázs E
    Plant Cell Rep; 2007 Apr; 26(4):459-65. PubMed ID: 17103215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene.
    Ramana Rao MV; Parameswari C; Sripriya R; Veluthambi K
    Plant Cell Rep; 2011 Jul; 30(7):1241-52. PubMed ID: 21327387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination.
    Ballester A; Cervera M; Peña L
    Plant Cell Rep; 2007 Jan; 26(1):39-45. PubMed ID: 16927091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The usefulness of the gfp reporter gene for monitoring Agrobacterium-mediated transformation of potato dihaploid and tetraploid genotypes.
    Rakosy-Tican E; Aurori CM; Dijkstra C; Thieme R; Aurori A; Davey MR
    Plant Cell Rep; 2007 May; 26(5):661-71. PubMed ID: 17165042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Germin-like protein 2 gene promoter from rice is responsive to fungal pathogens in transgenic potato plants.
    Munir F; Hayashi S; Batley J; Naqvi SM; Mahmood T
    Funct Integr Genomics; 2016 Jan; 16(1):19-27. PubMed ID: 26277722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of selectable marker-free sheath blight resistant transgenic rice plants by efficient co-transformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain.
    Sripriya R; Raghupathy V; Veluthambi K
    Plant Cell Rep; 2008 Oct; 27(10):1635-44. PubMed ID: 18663452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop.
    de Vetten N; Wolters AM; Raemakers K; van der Meer I; ter Stege R; Heeres E; Heeres P; Visser R
    Nat Biotechnol; 2003 Apr; 21(4):439-42. PubMed ID: 12627169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining a regeneration-promoting ipt gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes.
    López-Noguera S; Petri C; Burgos L
    Plant Cell Rep; 2009 Dec; 28(12):1781-90. PubMed ID: 19820947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducible isopentenyl transferase as a high-efficiency marker for plant transformation.
    Kunkel T; Niu QW; Chan YS; Chua NH
    Nat Biotechnol; 1999 Sep; 17(9):916-9. PubMed ID: 10471937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of selection strategies alternative to nptII in genetic transformation of citrus.
    Ballester A; Cervera M; Peña L
    Plant Cell Rep; 2008 Jun; 27(6):1005-15. PubMed ID: 18317775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system.
    Endo S; Sugita K; Sakai M; Tanaka H; Ebinuma H
    Plant J; 2002 Apr; 30(1):115-22. PubMed ID: 11967098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agrobacterium-Mediated Transformation of Solanum tuberosum L., Potato.
    Bruce MA; Shoup Rupp JL
    Methods Mol Biol; 2019; 1864():203-223. PubMed ID: 30415339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenic tall fescue containing the Agrobacterium tumefaciens ipt gene shows enhanced cold tolerance.
    Hu Y; Jia W; Wang J; Zhang Y; Yang L; Lin Z
    Plant Cell Rep; 2005 Mar; 23(10-11):705-9. PubMed ID: 15480687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of miniature potted rose (Rosa hybrida cv. Linda) with P( SAG12 )-ipt gene delays leaf senescence and enhances resistance to exogenous ethylene.
    Zakizadeh H; Lütken H; Sriskandarajah S; Serek M; Müller R
    Plant Cell Rep; 2013 Feb; 32(2):195-205. PubMed ID: 23207761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.