These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21185056)

  • 1. Threshold concentrations of biomass and iron for pressure drop increase in spiral-wound membrane elements.
    Hijnen WA; Cornelissen ER; van der Kooij D
    Water Res; 2011 Feb; 45(4):1607-16. PubMed ID: 21185056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction.
    Vrouwenvelder JS; Hinrichs C; Van der Meer WG; Van Loosdrecht MC; Kruithof JC
    Biofouling; 2009; 25(6):543-55. PubMed ID: 19437193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem.
    Vrouwenvelder JS; Graf von der Schulenburg DA; Kruithof JC; Johns ML; van Loosdrecht MC
    Water Res; 2009 Feb; 43(3):583-94. PubMed ID: 19058830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative assessment of the efficacy of spiral-wound membrane cleaning procedures to remove biofilms.
    Hijnen WA; Castillo C; Brouwer-Hanzens AH; Harmsen DJ; Cornelissen ER; van der Kooij D
    Water Res; 2012 Dec; 46(19):6369-81. PubMed ID: 23021522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems.
    Vrouwenvelder JS; Buiter J; Riviere M; van der Meer WG; van Loosdrecht MC; Kruithof JC
    Water Res; 2010 Feb; 44(3):689-702. PubMed ID: 19836048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations.
    Vrouwenvelder JS; Manolarakis SA; van der Hoek JP; van Paassen JA; van der Meer WG; van Agtmaal JM; Prummel HD; Kruithof JC; van Loosdrecht MC
    Water Res; 2008 Dec; 42(19):4856-68. PubMed ID: 18929382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment.
    Magic-Knezev A; van der Kooij D
    Water Res; 2004 Nov; 38(18):3971-9. PubMed ID: 15380987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate limitation to control biofouling.
    Vrouwenvelder JS; Beyer F; Dahmani K; Hasan N; Galjaard G; Kruithof JC; Van Loosdrecht MC
    Water Res; 2010 Jun; 44(11):3454-66. PubMed ID: 20394959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of anionic fluidized ion exchange (FIX) pre-treatment on nanofiltration (NF) membrane fouling.
    Cornelissen ER; Chasseriaud D; Siegers WG; Beerendonk EF; van der Kooij D
    Water Res; 2010 May; 44(10):3283-93. PubMed ID: 20381111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of biofilm accumulation on transmembrane and feed channel pressure drop: effects of crossflow velocity, feed spacer and biodegradable nutrient.
    Dreszer C; Flemming HC; Zwijnenburg A; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Mar; 50():200-11. PubMed ID: 24374131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel scenario for biofouling control of spiral wound membrane systems.
    Vrouwenvelder JS; Van Loosdrecht MC; Kruithof JC
    Water Res; 2011 Jul; 45(13):3890-8. PubMed ID: 21592541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems.
    Siddiqui A; Farhat N; Bucs SS; Linares RV; Picioreanu C; Kruithof JC; van Loosdrecht MC; Kidwell J; Vrouwenvelder JS
    Water Res; 2016 Mar; 91():55-67. PubMed ID: 26773488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Threshold concentration of easily assimilable organic carton in feedwater for biofouling of spiral-wound membranes.
    Hijnen WA; Biraud D; Cornelissen ER; van der Kooij D
    Environ Sci Technol; 2009 Jul; 43(13):4890-5. PubMed ID: 19673281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The correlation between biofilm biopolymer composition and membrane fouling in submerged membrane bioreactors.
    Luo J; Zhang J; Tan X; McDougald D; Zhuang G; Fane AG; Kjelleberg S; Cohen Y; Rice SA
    Biofouling; 2014 Oct; 30(9):1093-110. PubMed ID: 25367774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of soluble microbial products and their fouling impacts in membrane bioreactors.
    Jiang T; Kennedy MD; De Schepper V; Nam SN; Nopens I; Vanrolleghem PA; Amy G
    Environ Sci Technol; 2010 Sep; 44(17):6642-8. PubMed ID: 20704277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofouling and pollutant removal during long-term operation of an anaerobic membrane bioreactor treating municipal wastewater.
    Herrera-Robledo M; Morgan-Sagastume JM; Noyola A
    Biofouling; 2010 Jan; 26(1):23-30. PubMed ID: 20390553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomass characteristics and membrane aeration: toward a better understanding of membrane fouling in submerged membrane bioreactors (MBRs).
    Germain E; Stephenson T; Pearce P
    Biotechnol Bioeng; 2005 May; 90(3):316-22. PubMed ID: 15800864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of extracellular polymeric substances (EPSs) in membrane fouling of membrane bioreactor coupled with worm reactor.
    Tian Y; Li Z; Chen L; Lu Y
    Bioresour Technol; 2012 Nov; 123():566-73. PubMed ID: 22944491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofouling control by phosphorus limitation strongly depends on the assimilable organic carbon concentration.
    Javier L; Farhat NM; Desmond P; Linares RV; Bucs S; Kruithof JC; Vrouwenvelder JS
    Water Res; 2020 Sep; 183():116051. PubMed ID: 32622233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.