These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 21185117)
1. Impact of two-way air flow due to temperature difference on preventing the entry of outdoor particles using indoor positive pressure control method. Chen C; Zhao B; Yang X J Hazard Mater; 2011 Feb; 186(2-3):1290-9. PubMed ID: 21185117 [TBL] [Abstract][Full Text] [Related]
2. The effect of the size of openings on contaminant control between two adjacent spaces with differing air pressures. Kee-Chiang C; Chin-Yuan Y; Chun-Wan C AIHA J (Fairfax, Va); 2003; 64(6):792-8. PubMed ID: 14674805 [TBL] [Abstract][Full Text] [Related]
3. Particle size characterization and the indoor-to-outdoor relationship of atmospheric aerosols in Helsinki. Hussein T; Hämeri K; Aalto P; Asmi A; Kakko L; Kulmala M Scand J Work Environ Health; 2004; 30 Suppl 2():54-62. PubMed ID: 15487686 [TBL] [Abstract][Full Text] [Related]
4. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ; Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949 [TBL] [Abstract][Full Text] [Related]
5. Fine organic particulate matter dominates indoor-generated PM2.5 in RIOPA homes. Polidori A; Turpin B; Meng QY; Lee JH; Weisel C; Morandi M; Colome S; Stock T; Winer A; Zhang J; Kwon J; Alimokhtari S; Shendell D; Jones J; Farrar C; Maberti S J Expo Sci Environ Epidemiol; 2006 Jul; 16(4):321-31. PubMed ID: 16538235 [TBL] [Abstract][Full Text] [Related]
6. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses. Weisel CP; Zhang J; Turpin BJ; Morandi MT; Colome S; Stock TH; Spektor DM; Korn L; Winer AM; Kwon J; Meng QY; Zhang L; Harrington R; Liu W; Reff A; Lee JH; Alimokhtari S; Mohan K; Shendell D; Jones J; Farrar L; Maberti S; Fan T Res Rep Health Eff Inst; 2005 Nov; (130 Pt 1):1-107; discussion 109-27. PubMed ID: 16454009 [TBL] [Abstract][Full Text] [Related]
7. A simple and inexpensive method for determining the effective ventilation rate in a negatively pressurized room using airborne particles as a tracer. Pavelchak N; Palmer W; DePersis RP; London MA Appl Occup Environ Hyg; 2002 Oct; 17(10):704-10. PubMed ID: 12363211 [TBL] [Abstract][Full Text] [Related]
8. Long-term characterization of indoor and outdoor ultrafine particles at a commercial building. Wang Y; Hopke PK; Chalupa DC; Utell MJ Environ Sci Technol; 2010 Aug; 44(15):5775-80. PubMed ID: 20586487 [TBL] [Abstract][Full Text] [Related]
9. Current asthma and respiratory symptoms among pupils in Shanghai, China: influence of building ventilation, nitrogen dioxide, ozone, and formaldehyde in classrooms. Mi YH; Norbäck D; Tao J; Mi YL; Ferm M Indoor Air; 2006 Dec; 16(6):454-64. PubMed ID: 17100666 [TBL] [Abstract][Full Text] [Related]
10. On the estimation of characteristic indoor air quality parameters using analytical and numerical methods. Halios CH; Helmis CG Sci Total Environ; 2007 Aug; 381(1-3):222-32. PubMed ID: 17466360 [TBL] [Abstract][Full Text] [Related]
11. The benefits of whole-house in-duct air cleaning in reducing exposures to fine particulate matter of outdoor origin: a modeling analysis. Macintosh DL; Minegishi T; Kaufman M; Baker BJ; Allen JG; Levy JI; Myatt TA J Expo Sci Environ Epidemiol; 2010 Mar; 20(2):213-24. PubMed ID: 19319161 [TBL] [Abstract][Full Text] [Related]
12. Effects of types of ventilation system on indoor particle concentrations in residential buildings. Park JS; Jee NY; Jeong JW Indoor Air; 2014 Dec; 24(6):629-38. PubMed ID: 24750197 [TBL] [Abstract][Full Text] [Related]
13. Effect of particle spatial distribution on particle deposition in ventilation rooms. Zhao B; Wu J J Hazard Mater; 2009 Oct; 170(1):449-56. PubMed ID: 19467777 [TBL] [Abstract][Full Text] [Related]
14. Parameterization of meteorological variables in the process of infiltration of outdoor ultrafine particles into a residential building. Hahn I; Brixey LA; Wiener RW; Henkle SW J Environ Monit; 2009 Dec; 11(12):2192-200. PubMed ID: 20024016 [TBL] [Abstract][Full Text] [Related]
16. Pilot study of directional airflow and containment of airborne particles in the size of Mycobacterium tuberculosis in an operating room. Olmsted RN Am J Infect Control; 2008 May; 36(4):260-7. PubMed ID: 18455046 [TBL] [Abstract][Full Text] [Related]
17. Physico-chemical characterization of indoor/outdoor particulate matter in two residential houses in Oslo, Norway: measurements overview and physical properties--URBAN-AEROSOL Project. Lazaridis M; Aleksandropoulou V; Smolík J; Hansen JE; Glytsos T; Kalogerakis N; Dahlin E Indoor Air; 2006 Aug; 16(4):282-95. PubMed ID: 16842609 [TBL] [Abstract][Full Text] [Related]
18. The RAGENA dynamic model of radon generation, entry and accumulation indoors. Font L; Baixeras C Sci Total Environ; 2003 May; 307(1-3):55-69. PubMed ID: 12711425 [TBL] [Abstract][Full Text] [Related]
19. Particulate matter and manganese exposures in Indianapolis, Indiana. Pellizzari ED; Clayton CA; Rodes CE; Mason RE; Piper LL; Fort B; Pfeifer G; Lynam D J Expo Anal Environ Epidemiol; 2001; 11(6):423-40. PubMed ID: 11791160 [TBL] [Abstract][Full Text] [Related]
20. [Dust particles and metals in outdoor and indoor air of Upper Silesia]. Górny RL; Jedrzejczak A; Pastuszka JS Rocz Panstw Zakl Hig; 1995; 46(2):151-61. PubMed ID: 8533033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]