These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21185171)

  • 41. Production of hydrogen and methane from potatoes by two-phase anaerobic fermentation.
    Xie B; Cheng J; Zhou J; Song W; Liu J; Cen K
    Bioresour Technol; 2008 Sep; 99(13):5942-6. PubMed ID: 18068353
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate.
    Hung CH; Lee KS; Cheng LH; Huang YH; Lin PJ; Chang JS
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):693-701. PubMed ID: 17440720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor.
    Li J; Zheng G; He J; Chang S; Qin Z
    Biotechnol Adv; 2009; 27(5):573-7. PubMed ID: 19393312
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Improvement of the method of isolation of hydrogen-forming bacteria of Clostridium genus].
    Pritula IR; Tashirev AB
    Mikrobiol Z; 2012; 74(6):58-64. PubMed ID: 23293828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Palladium nanoparticles produced by fermentatively grown bacteria as catalyst for diatrizoate removal with biogenic hydrogen.
    Van Nevel S; Hennebel T; Verschuere S; De Corte S; Boon N; Verstraete W
    Commun Agric Appl Biol Sci; 2011; 76(1):185-8. PubMed ID: 21539227
    [No Abstract]   [Full Text] [Related]  

  • 46. The effect of temperature and effluent recycle rate on hydrogen production by undefined bacterial granules.
    Ngoma L; Masilela P; Obazu F; Gray VM
    Bioresour Technol; 2011 Oct; 102(19):8986-91. PubMed ID: 21782420
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioaugmentation of the thermophilic anaerobic biodegradation of cellulose and corn stover.
    Strang O; Ács N; Wirth R; Maróti G; Bagi Z; Rákhely G; Kovács KL
    Anaerobe; 2017 Aug; 46():104-113. PubMed ID: 28554814
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time.
    Buitrón G; Carvajal C
    Bioresour Technol; 2010 Dec; 101(23):9071-7. PubMed ID: 20655747
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Study of the operational conditions for anaerobic digestion of urban solid wastes.
    M EF; Cristancho DE; Arellano AV
    Waste Manag; 2006; 26(5):546-56. PubMed ID: 16321515
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A kinetic approach to anaerobic hydrogen-producing process.
    Mu Y; Yu HQ; Wang G
    Water Res; 2007 Mar; 41(5):1152-60. PubMed ID: 17267006
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of cyanide on the anaerobic degradation of glucose.
    Pirc ET; Levstek M; Bukovec P
    Water Sci Technol; 2010; 62(8):1799-806. PubMed ID: 20962395
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1.
    Lo YC; Huang CY; Cheng CL; Lin CY; Chang JS
    Bioresour Technol; 2011 Sep; 102(18):8384-92. PubMed ID: 21489783
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fermentative hydrogen production in a system using anaerobic digester sludge without heat treatment as a biomass source.
    Shizas I; Bagley DM
    Water Sci Technol; 2005; 52(1-2):139-44. PubMed ID: 16180420
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Co-digestion of intermediate landfill leachate and sewage sludge as a method of leachate utilization.
    Montusiewicz A; Lebiocka M
    Bioresour Technol; 2011 Feb; 102(3):2563-71. PubMed ID: 21167708
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomass-derived syngas fermentation into biofuels: Opportunities and challenges.
    Munasinghe PC; Khanal SK
    Bioresour Technol; 2010 Jul; 101(13):5013-22. PubMed ID: 20096574
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors.
    Detman A; Mielecki D; Chojnacka A; Salamon A; Błaszczyk MK; Sikora A
    Microb Cell Fact; 2019 Feb; 18(1):36. PubMed ID: 30760264
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Co-digestion of sewage sludge with glycerol to boost biogas production.
    Fountoulakis MS; Petousi I; Manios T
    Waste Manag; 2010 Oct; 30(10):1849-53. PubMed ID: 20434322
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Feasibility of hydrogen production in thermophilic mixed fermentation by natural anaerobes.
    Cheong DY; Hansen CL
    Bioresour Technol; 2007 Aug; 98(11):2229-39. PubMed ID: 17107783
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures ofClostridium spp.
    Masset J; Calusinska M; Hamilton C; Hiligsmann S; Joris B; Wilmotte A; Thonart P
    Biotechnol Biofuels; 2012 May; 5(1):35. PubMed ID: 22616621
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors.
    Ren NQ; Chua H; Chan SY; Tsang YF; Wang YJ; Sin N
    Bioresour Technol; 2007 Jul; 98(9):1774-80. PubMed ID: 16935495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.