These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. New glucosidase inhibitors from an ayurvedic herbal treatment for type 2 diabetes: structures and inhibition of human intestinal maltase-glucoamylase with compounds from Salacia reticulata. Sim L; Jayakanthan K; Mohan S; Nasi R; Johnston BD; Pinto BM; Rose DR Biochemistry; 2010 Jan; 49(3):443-51. PubMed ID: 20039683 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and biological evaluation of α-1-C-4'-arylbutyl-L-arabinoiminofuranoses, a new class of α-glucosidase inhibitors. Natori Y; Sakuma T; Yoshimura Y; Kinami K; Hirokami Y; Sato K; Adachi I; Kato A; Takahata H Bioorg Med Chem Lett; 2014 Aug; 24(15):3298-301. PubMed ID: 24973028 [TBL] [Abstract][Full Text] [Related]
6. Turmeric (Curcuma longa L.) volatile oil inhibits key enzymes linked to type 2 diabetes. Lekshmi PC; Arimboor R; Indulekha PS; Menon AN Int J Food Sci Nutr; 2012 Nov; 63(7):832-4. PubMed ID: 22385048 [TBL] [Abstract][Full Text] [Related]
7. Isolation, structure identification and SAR studies on thiosugar sulfonium salts, neosalaprinol and neoponkoranol, as potent α-glucosidase inhibitors. Xie W; Tanabe G; Akaki J; Morikawa T; Ninomiya K; Minematsu T; Yoshikawa M; Wu X; Muraoka O Bioorg Med Chem; 2011 Mar; 19(6):2015-22. PubMed ID: 21345683 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of recombinant human maltase glucoamylase by salacinol and derivatives. Rossi EJ; Sim L; Kuntz DA; Hahn D; Johnston BD; Ghavami A; Szczepina MG; Kumar NS; Sterchi EE; Nichols BL; Pinto BM; Rose DR FEBS J; 2006 Jun; 273(12):2673-83. PubMed ID: 16817895 [TBL] [Abstract][Full Text] [Related]
9. Hypoglycemic activity of the antioxidant saponarin, characterized as alpha-glucosidase inhibitor present in Tinospora cordifolia. Sengupta S; Mukherjee A; Goswami R; Basu S J Enzyme Inhib Med Chem; 2009 Jun; 24(3):684-90. PubMed ID: 18951283 [TBL] [Abstract][Full Text] [Related]
10. The α-glucosidase inhibitor miglitol decreases glucose fluctuations and inflammatory cytokine gene expression in peripheral leukocytes of Japanese patients with type 2 diabetes mellitus. Osonoi T; Saito M; Mochizuki K; Fukaya N; Muramatsu T; Inoue S; Fuchigami M; Goda T Metabolism; 2010 Dec; 59(12):1816-22. PubMed ID: 20667563 [TBL] [Abstract][Full Text] [Related]
12. Discovery and biological evaluation of novel alpha-glucosidase inhibitors with in vivo antidiabetic effect. Park H; Hwang KY; Kim YH; Oh KH; Lee JY; Kim K Bioorg Med Chem Lett; 2008 Jul; 18(13):3711-5. PubMed ID: 18524587 [TBL] [Abstract][Full Text] [Related]
13. The effect of heteroatom substitution of sulfur for selenium in glucosidase inhibitors on intestinal α-glucosidase activities. Eskandari R; Jones K; Rose DR; Pinto BM Chem Commun (Camb); 2011 Aug; 47(32):9134-6. PubMed ID: 21750824 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of novel triterpene and N-allylated/N-alkylated niacin hybrids as α-glucosidase inhibitors. Narender T; Madhur G; Jaiswal N; Agrawal M; Maurya CK; Rahuja N; Srivastava AK; Tamrakar AK Eur J Med Chem; 2013 May; 63():162-9. PubMed ID: 23474902 [TBL] [Abstract][Full Text] [Related]
15. Design and Synthesis of Labystegines, Hybrid Iminosugars from LAB and Calystegine, as Inhibitors of Intestinal α-Glucosidases: Binding Conformation and Interaction for ntSI. Kato A; Zhang ZL; Wang HY; Jia YM; Yu CY; Kinami K; Hirokami Y; Tsuji Y; Adachi I; Nash RJ; Fleet GW; Koseki J; Nakagome I; Hirono S J Org Chem; 2015 May; 80(9):4501-15. PubMed ID: 25843107 [TBL] [Abstract][Full Text] [Related]
16. Changes in α-glucosidase activities along the jejunal-ileal axis of normal rats by the α-glucosidase inhibitor miglitol. Mochizuki K; Hanai E; Suruga K; Kuranuki S; Goda T Metabolism; 2010 Oct; 59(10):1442-7. PubMed ID: 20153003 [TBL] [Abstract][Full Text] [Related]
17. Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: a promising class of potential antidiabetic agents. Mohan S; Eskandari R; Pinto BM Acc Chem Res; 2014 Jan; 47(1):211-25. PubMed ID: 23964564 [TBL] [Abstract][Full Text] [Related]
18. Biological evaluation of de-O-sulfonated analogs of salacinol, the role of sulfate anion in the side chain on the alpha-glucosidase inhibitory activity. Tanabe G; Yoshikai K; Hatanaka T; Yamamoto M; Shao Y; Minematsu T; Muraoka O; Wang T; Matsuda H; Yoshikawa M Bioorg Med Chem; 2007 Jun; 15(11):3926-37. PubMed ID: 17416527 [TBL] [Abstract][Full Text] [Related]
19. Probing the active-site requirements of human intestinal N-terminal maltase-glucoamylase: Synthesis and enzyme inhibitory activities of a six-membered ring nitrogen analogue of kotalanol and its de-O-sulfonated derivative. Mohan S; Sim L; Rose DR; Pinto BM Bioorg Med Chem; 2010 Nov; 18(22):7794-8. PubMed ID: 20970346 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of polyhydroxybenzophenones as α-glucosidase inhibitors. Hu X; Xiao Y; Wu J; Ma L Arch Pharm (Weinheim); 2011 Feb; 344(2):71-7. PubMed ID: 21290422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]