BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 21185256)

  • 1. Carbon metabolism and the sign of control coefficients in metabolic adaptations underlying K-ras transformation.
    de Atauri P; Benito A; Vizán P; Zanuy M; Mangues R; Marín S; Cascante M
    Biochim Biophys Acta; 2011 Jun; 1807(6):746-54. PubMed ID: 21185256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic network adaptations in cancer as targets for novel therapies.
    Cascante M; Benito A; Zanuy M; Vizán P; Marín S; de Atauri P
    Biochem Soc Trans; 2010 Oct; 38(5):1302-6. PubMed ID: 20863303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered detoxification status and increased resistance to oxidative stress by K-ras transformation.
    Recktenwald CV; Kellner R; Lichtenfels R; Seliger B
    Cancer Res; 2008 Dec; 68(24):10086-93. PubMed ID: 19074874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between oncogenic K-Ras and wild-type H-Ras in Caco2 cell transformation.
    Ikonomou G; Kostourou V; Shirasawa S; Sasazuki T; Samiotaki M; Panayotou G
    J Proteomics; 2012 Sep; 75(17):5356-69. PubMed ID: 22800643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding alternative fluxes/effluxes through comparative metabolic pathway analysis of phylum actinobacteria using a simplified approach.
    Verma M; Lal D; Saxena A; Anand S; Kaur J; Kaur J; Lal R
    Gene; 2013 Dec; 531(2):306-17. PubMed ID: 24055419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice [corrected] fibroblasts.
    Vizan P; Boros LG; Figueras A; Capella G; Mangues R; Bassilian S; Lim S; Lee WN; Cascante M
    Cancer Res; 2005 Jul; 65(13):5512-5. PubMed ID: 15994921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Proteomic approach for protein-profiling the oncogenic ras induced transformation (H-, K-, and N-Ras) in NIH/3T3 mouse embryonic fibroblasts.
    Kim S; Lee YZ; Kim YS; Bahk YY
    Proteomics; 2008 Aug; 8(15):3082-93. PubMed ID: 18601226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation by different oncogenes relies on specific metabolic adaptations.
    Peruzzo P; Comelli M; Di Giorgio E; Franforte E; Mavelli I; Brancolini C
    Cell Cycle; 2016 Oct; 15(19):2656-2668. PubMed ID: 27485932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic optimization of metabolic networks coupled with gene expression.
    Waldherr S; Oyarzún DA; Bockmayr A
    J Theor Biol; 2015 Jan; 365():469-85. PubMed ID: 25451533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative proteomic approach to understand metabolic adaptation in non-small cell lung cancer.
    Martín-Bernabé A; Cortés R; Lehmann SG; Seve M; Cascante M; Bourgoin-Voillard S
    J Proteome Res; 2014 Nov; 13(11):4695-704. PubMed ID: 25029028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MTH1 expression is required for effective transformation by oncogenic HRAS.
    Giribaldi MG; Munoz A; Halvorsen K; Patel A; Rai P
    Oncotarget; 2015 May; 6(13):11519-29. PubMed ID: 25893378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geranylgeranylated, but not farnesylated, RhoB suppresses Ras transformation of NIH-3T3 cells.
    Mazières J; Tillement V; Allal C; Clanet C; Bobin L; Chen Z; Sebti SM; Favre G; Pradines A
    Exp Cell Res; 2005 Apr; 304(2):354-64. PubMed ID: 15748883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sedoheptulose kinase regulates cellular carbohydrate metabolism by sedoheptulose 7-phosphate supply.
    Nagy C; Haschemi A
    Biochem Soc Trans; 2013 Apr; 41(2):674-80. PubMed ID: 23514175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the sign pattern of metabolic control coefficients.
    Sen AK
    J Theor Biol; 1996 Oct; 182(3):269-75. PubMed ID: 8944158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression.
    Guerrero S; Casanova I; Farré L; Mazo A; Capellà G; Mangues R
    Cancer Res; 2000 Dec; 60(23):6750-6. PubMed ID: 11118062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The complex network of non-cellulosic carbohydrate metabolism.
    Lytovchenko A; Sonnewald U; Fernie AR
    Curr Opin Plant Biol; 2007 Jun; 10(3):227-35. PubMed ID: 17434793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.