BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 21185278)

  • 21. Disruption of Hedgehog Signaling by Vismodegib Leads to Cleft Palate and Delayed Osteogenesis in Experimental Design.
    Zhang S; Wang C; Xie C; Lai Y; Wu D; Gan G; Chen W
    J Craniofac Surg; 2017 Sep; 28(6):1607-1614. PubMed ID: 28863112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Function and Regulatory Network of Pax9 Gene in Palate Development.
    Li R; Chen Z; Yu Q; Weng M; Chen Z
    J Dent Res; 2019 Mar; 98(3):277-287. PubMed ID: 30583699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential expression of Bmp2, Bmp4 and Bmp3 in embryonic development of mouse anterior and posterior palate.
    Nie XG
    Chin Med J (Engl); 2005 Oct; 118(20):1710-6. PubMed ID: 16313756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone morphogenetic protein type I receptor inhibition induces cleft palate associated with micrognathia and cleft lower lip in mice.
    Lai Y; Xie C; Zhang S; Gan G; Wu D; Chen W
    Birth Defects Res A Clin Mol Teratol; 2016 Jul; 106(7):612-23. PubMed ID: 27150428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice.
    Alappat SR; Zhang Z; Suzuki K; Zhang X; Liu H; Jiang R; Yamada G; Chen Y
    Dev Biol; 2005 Jan; 277(1):102-13. PubMed ID: 15572143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Indian hedgehog signaling in palatal osteogenesis.
    Levi B; James AW; Nelson ER; Brugmann SA; Sorkin M; Manu A; Longaker MT
    Plast Reconstr Surg; 2011 Mar; 127(3):1182-1190. PubMed ID: 21364421
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Iyyanar PPR; Nazarali AJ
    Front Physiol; 2017; 8():929. PubMed ID: 29184513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transforming Growth Factor-Beta and Sonic Hedgehog Signaling in Palatal Epithelium Regulate Tenascin-C Expression in Palatal Mesenchyme During Soft Palate Development.
    Ohki S; Oka K; Ogata K; Okuhara S; Rikitake M; Toda-Nakamura M; Tamura S; Ozaki M; Iseki S; Sakai T
    Front Physiol; 2020; 11():532. PubMed ID: 32581832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice.
    Noda K; Mishina Y; Komatsu Y
    Dev Biol; 2016 Jul; 415(2):306-313. PubMed ID: 26116174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression and requirement of T-box transcription factors Tbx2 and Tbx3 during secondary palate development in the mouse.
    Zirzow S; Lüdtke TH; Brons JF; Petry M; Christoffels VM; Kispert A
    Dev Biol; 2009 Dec; 336(2):145-55. PubMed ID: 19769959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal and spatial expression of Hoxa-2 during murine palatogenesis.
    Nazarali A; Puthucode R; Leung V; Wolf L; Hao Z; Yeung J
    Cell Mol Neurobiol; 2000 Jun; 20(3):269-90. PubMed ID: 10789828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hand2 is required in the epithelium for palatogenesis in mice.
    Xiong W; He F; Morikawa Y; Yu X; Zhang Z; Lan Y; Jiang R; Cserjesi P; Chen Y
    Dev Biol; 2009 Jun; 330(1):131-41. PubMed ID: 19341725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Type III transforming growth factor beta receptor regulates vascular and osteoblast development during palatogenesis.
    Hill CR; Jacobs BH; Brown CB; Barnett JV; Goudy SL
    Dev Dyn; 2015 Feb; 244(2):122-33. PubMed ID: 25382630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation.
    Li L; Wang Y; Lin M; Yuan G; Yang G; Zheng Y; Chen Y
    PLoS One; 2013; 8(6):e66107. PubMed ID: 23776616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X; Han J; Ito Y; Bringas P; Urata MM; Chai Y
    Dev Biol; 2006 Sep; 297(1):238-48. PubMed ID: 16780827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dosage-dependent role for Spry2 in growth and patterning during palate development.
    Welsh IC; Hagge-Greenberg A; O'Brien TP
    Mech Dev; 2007; 124(9-10):746-61. PubMed ID: 17693063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of the histone methyltransferase SET domain bifurcated 1 during palatal development.
    Kano S; Higashihori N; Thiha P; Takechi M; Iseki S; Moriyama K
    Biochem Biophys Res Commun; 2022 Apr; 598():74-80. PubMed ID: 35151207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mesenchymal changes associated with retinoic acid induced cleft palate in CD-1 mice.
    Degitz SJ; Francis BM; Foley GL
    J Craniofac Genet Dev Biol; 1998; 18(2):88-99. PubMed ID: 9672841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Foxf2 is required for secondary palate development and Tgfβ signaling in palatal shelf mesenchyme.
    Nik AM; Johansson JA; Ghiami M; Reyahi A; Carlsson P
    Dev Biol; 2016 Jul; 415(1):14-23. PubMed ID: 27180663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.