These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21185409)

  • 1. Mechanical characteristics of solid-freeform-fabricated porous calcium polyphosphate structures with oriented stacked layers.
    Shanjani Y; Hu Y; Pilliar RM; Toyserkani E
    Acta Biomater; 2011 Apr; 7(4):1788-96. PubMed ID: 21185409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: in vivo studies.
    Shanjani Y; Hu Y; Toyserkani E; Grynpas M; Kandel RA; Pilliar RM
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):972-80. PubMed ID: 23529933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM).
    Parthasarathy J; Starly B; Raman S; Christensen A
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):249-59. PubMed ID: 20142109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes.
    Shanjani Y; De Croos JN; Pilliar RM; Kandel RA; Toyserkani E
    J Biomed Mater Res B Appl Biomater; 2010 May; 93(2):510-9. PubMed ID: 20162726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of porous calcium polyphosphate implants by solid freeform fabrication: a study of processing parameters and in vitro degradation characteristics.
    Porter NL; Pilliar RM; Grynpas MD
    J Biomed Mater Res; 2001 Sep; 56(4):504-15. PubMed ID: 11400128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration.
    Martínez-Vázquez FJ; Perera FH; Miranda P; Pajares A; Guiberteau F
    Acta Biomater; 2010 Nov; 6(11):4361-8. PubMed ID: 20566307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing and properties of Na-doped porous calcium polyphosphates - Mechanical properties and in vitro degradation characteristics.
    Pilliar RM; Hu X; Grynpas MD; Kandel RA
    J Mech Behav Biomed Mater; 2019 Mar; 91():355-365. PubMed ID: 30658249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy.
    Nouri A; Hodgson PD; Wen CE
    Acta Biomater; 2010 Apr; 6(4):1630-9. PubMed ID: 19815096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement.
    Ishikawa K; Asaoka K
    J Biomed Mater Res; 1995 Dec; 29(12):1537-43. PubMed ID: 8600144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Preparation of chitosan-encapsulated porous calcium polyphosphate bioceramic].
    Fan C; Liu D; Ren Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec; 21(12):1355-8. PubMed ID: 18277683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous calcium polyphosphate scaffolds for bone substitute applications -- in vitro characterization.
    Pilliar RM; Filiaggi MJ; Wells JD; Grynpas MD; Kandel RA
    Biomaterials; 2001 May; 22(9):963-72. PubMed ID: 11311015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous poly(para-phenylene) scaffolds for load-bearing orthopedic applications.
    DiRienzo AL; Yakacki CM; Frensemeier M; Schneider AS; Safranski DL; Hoyt AJ; Frick CP
    J Mech Behav Biomed Mater; 2014 Feb; 30():347-57. PubMed ID: 24374261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds.
    Miranda P; Pajares A; Guiberteau F
    Acta Biomater; 2008 Nov; 4(6):1715-24. PubMed ID: 18583207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste.
    Almirall A; Larrecq G; Delgado JA; Martínez S; Planell JA; Ginebra MP
    Biomaterials; 2004 Aug; 25(17):3671-80. PubMed ID: 15020142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ball milling on the processing of bone substitutes with calcium phosphate powders.
    Bignon A; Chevalier J; Fantozzi G
    J Biomed Mater Res; 2002; 63(5):619-26. PubMed ID: 12209909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber-enriched double-setting calcium phosphate bone cement.
    dos Santos LA; Carrodéguas RG; Boschi AO; Fonseca de Arruda AC
    J Biomed Mater Res A; 2003 May; 65(2):244-50. PubMed ID: 12734819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization and mechanical performance of calcium phosphate scaffolds and natural bones: a comparative study.
    Fuentes E; Sáenz de Viteri V; Igartua A; Martinetti R; Dolcini L; Barandika G
    J Appl Biomater Biomech; 2010; 8(3):159-65. PubMed ID: 21337307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites.
    Zhang F; Chang J; Lu J; Lin K; Ning C
    Acta Biomater; 2007 Nov; 3(6):896-904. PubMed ID: 17625995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphate dihydrate mixtures.
    Fernández E; Vlad MD; Gel MM; López J; Torres R; Cauich JV; Bohner M
    Biomaterials; 2005 Jun; 26(17):3395-404. PubMed ID: 15621228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.