These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21185409)

  • 21. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L
    Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis.
    Ginebra MP; Driessens FC; Planell JA
    Biomaterials; 2004 Aug; 25(17):3453-62. PubMed ID: 15020119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compression behaviour of biphasic calcium phosphate and biphasic calcium phosphate-agarose scaffolds for bone regeneration.
    Puértolas JA; Vadillo JL; Sánchez-Salcedo S; Nieto A; Gómez-Barrena E; Vallet-Regí M
    Acta Biomater; 2011 Feb; 7(2):841-7. PubMed ID: 20709633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold.
    Kim GH
    Biomed Mater; 2008 Jun; 3(2):025010. PubMed ID: 18458365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method.
    Macchetta A; Turner IG; Bowen CR
    Acta Biomater; 2009 May; 5(4):1319-27. PubMed ID: 19112055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of incorporation of HA/ZrO(2) into glass ionomer cement (GIC).
    Gu YW; Yap AU; Cheang P; Khor KA
    Biomaterials; 2005 Mar; 26(7):713-20. PubMed ID: 15350775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase transformations during processing and in vitro degradation of porous calcium polyphosphates.
    Hu Y; Pilliar R; Grynpas M; Kandel R; Werner-Zwanziger U; Filiaggi M
    J Mater Sci Mater Med; 2016 Jul; 27(7):117. PubMed ID: 27255688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of TiO2 and Ag2O addition on tricalcium phosphate ceramics.
    Seeley Z; Bandyopadhyay A; Bose S
    J Biomed Mater Res A; 2007 Jul; 82(1):113-21. PubMed ID: 17269142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical property anisotropy of pharmaceutical excipient compacts.
    Mullarney MP; Hancock BC
    Int J Pharm; 2006 May; 314(1):9-14. PubMed ID: 16621371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of processing parameters on the degradation of calcium polyphosphate bioceramic for bone tissue scaffolds].
    Qin Y; Yu X; Chen Y; Ding Y; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):794-7. PubMed ID: 17899747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.
    Hu Y; Shanjani Y; Toyserkani E; Grynpas M; Wang R; Pilliar R
    J Biomed Mater Res B Appl Biomater; 2014 Feb; 102(2):274-83. PubMed ID: 23997039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.
    Čapek J; Vojtěch D
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():21-8. PubMed ID: 24411347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production and characterization of zirconia structures with a porous surface.
    Roedel S; Mesquita-Guimarães J; Souza JCM; Silva FS; Fredel MC; Henriques B
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():264-273. PubMed ID: 31029319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of glycerol concentrations on the mechanical properties of additive manufactured porous calcium polyphosphate structures for bone substitute applications.
    Sheydaeian E; Vlasea M; Woo A; Pilliar R; Hu E; Toyserkani E
    J Biomed Mater Res B Appl Biomater; 2017 May; 105(4):828-835. PubMed ID: 26804634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel multilayer Ti foam with cortical bone strength and cytocompatibility.
    Kato K; Ochiai S; Yamamoto A; Daigo Y; Honma K; Matano S; Omori K
    Acta Biomater; 2013 Mar; 9(3):5802-9. PubMed ID: 23201016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.
    Capek J; Vojtěch D
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():494-501. PubMed ID: 25175241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of graphene on setting and mechanical behaviour of tricalcium phosphate bioactive cements.
    Baudín C; Benet T; Pena P
    J Mech Behav Biomed Mater; 2019 Jan; 89():33-47. PubMed ID: 30245268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Porous calcium polyphosphate as load-bearing bone substitutes: in vivo study.
    Pilliar RM; Kandel RA; Grynpas MD; Hu Y
    J Biomed Mater Res B Appl Biomater; 2013 Jan; 101(1):1-8. PubMed ID: 23143776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and mechanical properties of Saxidomus purpuratus biological shells.
    Yang W; Zhang GP; Zhu XF; Li XW; Meyers MA
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1514-30. PubMed ID: 21783161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of different failure tests for pharmaceutical tablets: applicability of the Drucker-Prager failure criterion.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    Int J Pharm; 2014 Aug; 470(1-2):63-9. PubMed ID: 24810242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.