BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21185453)

  • 1. A simple algorithm for measuring particle size distributions on an uneven background from TEM images.
    Cervera Gontard L; Ozkaya D; Dunin-Borkowski RE
    Ultramicroscopy; 2011 Jan; 111(2):101-6. PubMed ID: 21185453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automatic algorithm for determination of the nanoparticles from TEM images using circular hough transform.
    Mirzaei M; Rafsanjani HK
    Micron; 2017 May; 96():86-95. PubMed ID: 28282550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs.
    Mayhew TM; Mühlfeld C; Vanhecke D; Ochs M
    Ann Anat; 2009 Apr; 191(2):153-70. PubMed ID: 19135344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the Hough transform for the automatic determination of soot aggregate morphology.
    Grishin I; Thomson K; Migliorini F; Sloan JJ
    Appl Opt; 2012 Feb; 51(5):610-20. PubMed ID: 22330294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size, number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD.
    Kaegi R; Wagner T; Hetzer B; Sinnet B; Tzvetkov G; Boller M
    Water Res; 2008 May; 42(10-11):2778-86. PubMed ID: 18348895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: characterization.
    Attama AA; Schicke BC; Paepenmüller T; Müller-Goymann CC
    Eur J Pharm Biopharm; 2007 Aug; 67(1):48-57. PubMed ID: 17276663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric boundary reconstruction algorithm for industrial CT metrology application.
    Yin Z; Khare K; De Man B
    J Xray Sci Technol; 2009; 17(2):115-33. PubMed ID: 19696466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative characterization of nanoparticles in blood by transmission electron microscopy with a window-type microchip nanopipet.
    Tai LA; Kang YT; Chen YC; Wang YC; Wang YJ; Wu YT; Liu KL; Wang CY; Ko YF; Chen CY; Huang NC; Chen JK; Hsieh YF; Yew TR; Yang CS
    Anal Chem; 2012 Aug; 84(15):6312-6. PubMed ID: 22816618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional analysis by electron diffraction methods of nanocrystalline materials.
    Gammer C; Mangler C; Karnthaler HP; Rentenberger C
    Microsc Microanal; 2011 Dec; 17(6):866-71. PubMed ID: 22050969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiopaque dental adhesives: dispersion of flame-made Ta2O5/SiO2 nanoparticles in methacrylic matrices.
    Schulz H; Schimmoeller B; Pratsinis SE; Salz U; Bock T
    J Dent; 2008 Aug; 36(8):579-87. PubMed ID: 18534737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity.
    Qiu H; Stepanov V; Di Stasio AR; Chou T; Lee WY
    J Hazard Mater; 2011 Jan; 185(1):489-93. PubMed ID: 20940087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metalated diblock and triblock poly(ethylene oxide)-block-poly(4-vinylpyridine) copolymers: understanding of micelle and bulk structure.
    Bronstein LM; Sidorov SN; Zhirov V; Zhirov D; Kabachii YA; Kochev SY; Valetsky PM; Stein B; Kiseleva OI; Polyakov SN; Shtykova EV; Nikulina EV; Svergun DI; Khokhlov AR
    J Phys Chem B; 2005 Oct; 109(40):18786-98. PubMed ID: 16853418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water.
    Shen YF; Tang J; Nie ZH; Wang YD; Ren Y; Zuo L
    Bioresour Technol; 2009 Sep; 100(18):4139-46. PubMed ID: 19414249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal preparation and luminescence of LaF3:Eu3+ nanoparticles.
    Meng JX; Zhang MF; Liu YL; Man SQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jan; 66(1):81-5. PubMed ID: 16815080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the structures of size-selected TiO2 nanoparticles using X-ray absorption spectroscopy.
    Choi HC; Ahn HJ; Jung YM; Lee MK; Shin HJ; Kim SB; Sung YE
    Appl Spectrosc; 2004 May; 58(5):598-602. PubMed ID: 15165337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transitional properties of starch colloid with particle size reduction from micro- to nanometer.
    Liu D; Wu Q; Chen H; Chang PR
    J Colloid Interface Sci; 2009 Nov; 339(1):117-24. PubMed ID: 19666174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image processing and lattice determination for three-dimensional nanocrystals.
    Jiang L; Georgieva D; Nederlof I; Liu Z; Abrahams JP
    Microsc Microanal; 2011 Dec; 17(6):879-85. PubMed ID: 22094021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffractive electron imaging of nanoparticles on a substrate.
    Wu J; Weierstall U; Spence JC
    Nat Mater; 2005 Dec; 4(12):912-6. PubMed ID: 16299507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation: observation of magnetization and its relaxation at low temperature.
    Sivakumar M; Takami T; Ikuta H; Towata A; Yasui K; Tuziuti T; Kozuka T; Bhattacharya D; Iida Y
    J Phys Chem B; 2006 Aug; 110(31):15234-43. PubMed ID: 16884240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.