BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 21185460)

  • 21. Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy.
    Guhados G; Wan W; Hutter JL
    Langmuir; 2005 Jul; 21(14):6642-6. PubMed ID: 15982078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The apparent increase of the Young's modulus in thin cement layers.
    De Jager N; Pallav P; Feilzer AJ
    Dent Mater; 2004 Jun; 20(5):457-62. PubMed ID: 15081552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the elastic Young's modulus and cytotoxicity variations in fibroblasts exposed to carbon-based nanomaterials.
    Pastrana HF; Cartagena-Rivera AX; Raman A; Ávila A
    J Nanobiotechnology; 2019 Feb; 17(1):32. PubMed ID: 30797235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are tensile and compressive Young's moduli of compact bone different?
    Barak MM; Currey JD; Weiner S; Shahar R
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):51-60. PubMed ID: 19627807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation between surface stress and apparent Young's modulus of top-down silicon nanowires.
    Pennelli G; Totaro M; Nannini A
    ACS Nano; 2012 Dec; 6(12):10727-34. PubMed ID: 23130945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elastic properties of GaN nanowires: revealing the influence of planar defects on young's modulus at nanoscale.
    Dai S; Zhao J; He MR; Wang X; Wan J; Shan Z; Zhu J
    Nano Lett; 2015 Jan; 15(1):8-15. PubMed ID: 25427143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mathematical modelling of the elastic properties of retina: a determination of Young's modulus.
    Jones IL; Warner M; Stevens JD
    Eye (Lond); 1992; 6 ( Pt 6)():556-9. PubMed ID: 1289130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: I. Data processing for the extraction of the elastic modulus.
    Costa PM; Cachim PB; Gautam UK; Bando Y; Golberg D
    Nanotechnology; 2009 Oct; 20(40):405706. PubMed ID: 19752492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reinforcement of single-walled carbon nanotube bundles by intertube bridging.
    Kis A; Csányi G; Salvetat JP; Lee TN; Couteau E; Kulik AJ; Benoit W; Brugger J; Forró L
    Nat Mater; 2004 Mar; 3(3):153-7. PubMed ID: 14991016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chirality dependence of carbon single-walled nanotube material properties: axial Young's modulus.
    Veedu VP; Askari D; Ghasemi-Nejhad MN
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2159-66. PubMed ID: 17025143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ measurements on individual thin carbon nanotubes using nanomanipulators inside a scanning electron microscope.
    Wei X; Chen Q; Peng L; Cui R; Li Y
    Ultramicroscopy; 2010 Feb; 110(3):182-9. PubMed ID: 19962243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears.
    Gaihede M; Liao D; Gregersen H
    Phys Med Biol; 2007 Feb; 52(3):803-14. PubMed ID: 17228122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Young's modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques.
    Ni H; Li X
    Nanotechnology; 2006 Jul; 17(14):3591-7. PubMed ID: 19661610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes.
    Liu K; Zhu F; Liu L; Sun Y; Fan S; Jiang K
    Nanoscale; 2012 Jun; 4(11):3389-93. PubMed ID: 22538869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of Young's modulus for nanofibrillated cellulose multilayer thin films using buckling mechanics.
    Cranston ED; Eita M; Johansson E; Netrval J; Salajková M; Arwin H; Wågberg L
    Biomacromolecules; 2011 Apr; 12(4):961-9. PubMed ID: 21395236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction forces and conduction properties between multi wall carbon nanotube tips and Au(111).
    Luna M; de Pablo PJ; Colchero J; Gomez-Herrero J; Baro AM; Tokumoto H; Jarvis SP
    Ultramicroscopy; 2003 Jul; 96(1):83-92. PubMed ID: 12623173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface effect on the elastic behavior of static bending nanowires.
    He J; Lilley CM
    Nano Lett; 2008 Jul; 8(7):1798-802. PubMed ID: 18510370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micromechanical bending of single collagen fibrils using atomic force microscopy.
    Yang L; van der Werf KO; Koopman BF; Subramaniam V; Bennink ML; Dijkstra PJ; Feijen J
    J Biomed Mater Res A; 2007 Jul; 82(1):160-8. PubMed ID: 17269147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ observation of size-scale effects on the mechanical properties of ZnO nanowires.
    Asthana A; Momeni K; Prasad A; Yap YK; Yassar RS
    Nanotechnology; 2011 Jul; 22(26):265712. PubMed ID: 21586815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys.
    Kikuchi M; Takahashi M; Okuno O
    Dent Mater; 2006 Jul; 22(7):641-6. PubMed ID: 16221490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.