These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 21185594)
1. Cytotoxicity of, and innate immune response to, size-controlled polypyrrole nanoparticles in mammalian cells. Kim S; Oh WK; Jeong YS; Hong JY; Cho BR; Hahn JS; Jang J Biomaterials; 2011 Mar; 32(9):2342-50. PubMed ID: 21185594 [TBL] [Abstract][Full Text] [Related]
2. Cellular uptake, cytotoxicity, and innate immune response of silica-titania hollow nanoparticles based on size and surface functionality. Oh WK; Kim S; Choi M; Kim C; Jeong YS; Cho BR; Hahn JS; Jang J ACS Nano; 2010 Sep; 4(9):5301-13. PubMed ID: 20698555 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization. Vaitkuviene A; Kaseta V; Voronovic J; Ramanauskaite G; Biziuleviciene G; Ramanaviciene A; Ramanavicius A J Hazard Mater; 2013 Apr; 250-251():167-74. PubMed ID: 23454454 [TBL] [Abstract][Full Text] [Related]
4. Cellular uptake, cytotoxicity, and ROS generation with silica/conducting polymer core/shell nanospheres. Jeong YS; Oh WK; Kim S; Jang J Biomaterials; 2011 Oct; 32(29):7217-25. PubMed ID: 21724253 [TBL] [Abstract][Full Text] [Related]
6. Shape-dependent cytotoxicity and proinflammatory response of poly(3,4-ethylenedioxythiophene) nanomaterials. Oh WK; Kim S; Yoon H; Jang J Small; 2010 Apr; 6(7):872-9. PubMed ID: 20209653 [TBL] [Abstract][Full Text] [Related]
7. Polymerization model for hydrogen peroxide initiated synthesis of polypyrrole nanoparticles. Leonavicius K; Ramanaviciene A; Ramanavicius A Langmuir; 2011 Sep; 27(17):10970-6. PubMed ID: 21744833 [TBL] [Abstract][Full Text] [Related]
8. Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: a light-scattering analysis. Hong JY; Yoon H; Jang J Small; 2010 Mar; 6(5):679-86. PubMed ID: 20127667 [TBL] [Abstract][Full Text] [Related]
9. Phagocytic uptake and ROS-mediated cytotoxicity in human hepatic cell line of amphiphilic polyphosphazene nanoparticles. Qiu L; Chen Y; Gao M; Zheng C; Zhao Q J Biomed Mater Res A; 2013 Jan; 101(1):285-97. PubMed ID: 22969066 [TBL] [Abstract][Full Text] [Related]
10. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Zhao X; Ng S; Heng BC; Guo J; Ma L; Tan TT; Ng KW; Loo SC Arch Toxicol; 2013 Jun; 87(6):1037-52. PubMed ID: 22415765 [TBL] [Abstract][Full Text] [Related]
11. Sensing behaviors of polypyrrole nanotubes prepared in reverse microemulsions: effects of transducer size and transduction mechanism. Yoon H; Chang M; Jang J J Phys Chem B; 2006 Jul; 110(29):14074-7. PubMed ID: 16854102 [TBL] [Abstract][Full Text] [Related]
12. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Park MV; Neigh AM; Vermeulen JP; de la Fonteyne LJ; Verharen HW; Briedé JJ; van Loveren H; de Jong WH Biomaterials; 2011 Dec; 32(36):9810-7. PubMed ID: 21944826 [TBL] [Abstract][Full Text] [Related]
13. The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity. Liu Y; Jiao F; Qiu Y; Li W; Lao F; Zhou G; Sun B; Xing G; Dong J; Zhao Y; Chai Z; Chen C Biomaterials; 2009 Aug; 30(23-24):3934-45. PubMed ID: 19403166 [TBL] [Abstract][Full Text] [Related]
14. In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes. Wang Z; Roberge C; Dao LH; Wan Y; Shi G; Rouabhia M; Guidoin R; Zhang Z J Biomed Mater Res A; 2004 Jul; 70(1):28-38. PubMed ID: 15174106 [TBL] [Abstract][Full Text] [Related]
15. A bioinspired hyperthermic macrophage-based polypyrrole-polyethylenimine (Ppy-PEI) nanocomplex carrier to prevent and disrupt thrombotic fibrin clots. Burnouf T; Chen CH; Tan SJ; Tseng CL; Lu KY; Chang LH; Nyambat B; Huang SC; Jheng PR; Aditya RN; Mi FL; Chuang EY Acta Biomater; 2019 Sep; 96():468-479. PubMed ID: 31260820 [TBL] [Abstract][Full Text] [Related]
16. The preparation of polypyrrole surfaces in the presence of mesoporous silica nanoparticles and their biomedical applications. Cho Y; Borgens RB Nanotechnology; 2010 May; 21(20):205102. PubMed ID: 20418609 [TBL] [Abstract][Full Text] [Related]
17. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells. Passagne I; Morille M; Rousset M; Pujalté I; L'azou B Toxicology; 2012 Sep; 299(2-3):112-24. PubMed ID: 22627296 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo toxicity of rinsed and aged nanocellulose-polypyrrole composites. Ferraz N; Strømme M; Fellström B; Pradhan S; Nyholm L; Mihranyan A J Biomed Mater Res A; 2012 Aug; 100(8):2128-38. PubMed ID: 22615139 [TBL] [Abstract][Full Text] [Related]
19. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Jin CY; Zhu BS; Wang XF; Lu QH Chem Res Toxicol; 2008 Sep; 21(9):1871-7. PubMed ID: 18680314 [TBL] [Abstract][Full Text] [Related]
20. Size-dependent cytotoxicity of gold nanoparticles. Pan Y; Neuss S; Leifert A; Fischler M; Wen F; Simon U; Schmid G; Brandau W; Jahnen-Dechent W Small; 2007 Nov; 3(11):1941-9. PubMed ID: 17963284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]