BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21185845)

  • 1. Chromatin dynamics during cell cycle mediate conversion of DNA damage into chromatid breaks and affect formation of chromosomal aberrations: biological and clinical significance.
    Terzoudi GI; Hatzi VI; Donta-Bakoyianni C; Pantelias GE
    Mutat Res; 2011 Jun; 711(1-2):174-86. PubMed ID: 21185845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional cell-cycle chromatin conformation changes in the presence of DNA damage result into chromatid breaks: a new insight in the formation of radiation-induced chromosomal aberrations based on the direct observation of interphase chromatin.
    Pantelias GE; Terzoudi GI
    Mutat Res; 2010 Aug; 701(1):27-37. PubMed ID: 20398788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of DNA damage into chromosome damage in response to cell cycle regulation of chromatin condensation after irradiation.
    Terzoudi GI; Pantelias GE
    Mutagenesis; 1997 Jul; 12(4):271-6. PubMed ID: 9237773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on chromosome aberration induction: what can they tell us about DNA repair?
    Bailey SM; Bedford JS
    DNA Repair (Amst); 2006 Sep; 5(9-10):1171-81. PubMed ID: 16814619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A standardized G2-assay for the prediction of individual radiosensitivity.
    Pantelias GE; Terzoudi GI
    Radiother Oncol; 2011 Oct; 101(1):28-34. PubMed ID: 22014898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of radiosensitization by halogenated pyrimidines: effect of BrdU on repair of DNA breaks, interphase chromatin breaks, and potentially lethal damage in plateau-phase CHO cells.
    Iliakis G; Wang Y; Pantelias GE; Metzger L
    Radiat Res; 1992 Feb; 129(2):202-11. PubMed ID: 1734451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA damage processing and aberration formation in plants.
    Schubert I; Pecinka A; Meister A; Schubert V; Klatte M; Jovtchev G
    Cytogenet Genome Res; 2004; 104(1-4):104-8. PubMed ID: 15162022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Susceptibility to fluorescent light-induced chromatid breaks associated with DNA repair deficiency and malignant transformation in culture.
    Parshad R; Sanford KK; Jones GM; Tarone RE; Hoffman HA; Grier AH
    Cancer Res; 1980 Dec; 40(12):4415-9. PubMed ID: 7438072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The presence of DNA breaks and the formation of chromatid aberrations after incorporation of 125IdUrd may be necessary but are not sufficient to block cell cycle progression in G2 phase.
    Schneiderman MH; Schneiderman GS; Mühlmann-Díaz MC; Bedford JS
    Radiat Res; 1996 Jan; 145(1):17-23. PubMed ID: 8532831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal radiosensitivity of human tumor cells during the G2 cell cycle period.
    Parshad R; Gantt R; Sanford KK; Jones GM
    Cancer Res; 1984 Dec; 44(12 Pt 1):5577-82. PubMed ID: 6498819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of LET on the yield and quality of chromosomal damage in metaphase cells: a time-course study.
    Ritter S; Nasonova E; Gudowska-Novak E
    Int J Radiat Biol; 2002 Mar; 78(3):191-202. PubMed ID: 11869474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Possible role of protein damage in the development of UV-induced isochromatid breaks].
    Lebedeva LI; Ostrovskaia RM; Tsimmerman VG
    Genetika; 1978 Feb; 14(2):256-66. PubMed ID: 689368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial chromosome damage but not DNA damage is greater in ataxia telangiectasia cells.
    Pandita TK; Hittelman WN
    Radiat Res; 1992 Apr; 130(1):94-103. PubMed ID: 1561323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible role of chromatin alteration in the radiosensitivity of ataxia-telangiectasia.
    Hittelman WN; Pandita TK
    Int J Radiat Biol; 1994 Dec; 66(6 Suppl):S109-13. PubMed ID: 7836837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair and chromosomal damage.
    Bryant PE
    Radiother Oncol; 2004 Sep; 72(3):251-6. PubMed ID: 15450722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA repair and chromosomal alterations.
    Natarajan AT; Palitti F
    Mutat Res; 2008 Nov; 657(1):3-7. PubMed ID: 18801460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some unsolved problems and unresolved issues in radiation cytogenetics: a review and new data on roles of homologous recombination and non-homologous end joining.
    Nagasawa H; Brogan JR; Peng Y; Little JB; Bedford JS
    Mutat Res; 2010 Aug; 701(1):12-22. PubMed ID: 20298803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-irradiation exposure of peripheral blood lymphocytes to glutaraldehyde induces radiosensitization by increasing the initial yield of radiation-induced chromosomal aberrations.
    Hatzi VI; Terzoudi GI; Makropoulos V; Maravelias C; Pantelias GE
    Mutagenesis; 2008 Mar; 23(2):101-9. PubMed ID: 18227082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radioprotective effect of amifostine on cells from cancer prone patients and healthy individuals studied by the G2 and PCC assays.
    Manola KN; Terzoudi GI; Dardoufas CE; Malik SI; Pantelias GE
    Int J Radiat Biol; 2003 Oct; 79(10):831-8. PubMed ID: 14630542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The number of dysfunctional telomeres in a cell: one amplifies; more than one translocate.
    Tusell L; Soler D; Agostini M; Pampalona J; Genescà A
    Cytogenet Genome Res; 2008; 122(3-4):315-25. PubMed ID: 19188701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.