These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21185845)

  • 41. The benzene metabolite hydroquinone enhances G2-chromosomal radiosensitivity by inducing a less-efficient G2-M-checkpoint in irradiated lymphocytes.
    Hatzi VI; Terzoudi GI; Pantelias GE; Spiliopoulou C; Makropoulos V
    Int J Oncol; 2007 Jul; 31(1):145-52. PubMed ID: 17549415
    [TBL] [Abstract][Full Text] [Related]  

  • 42. G2 Chromosomal Radiosensitivity Assay for Testing Individual Radiation Sensitivity.
    Haskins JS; Kato TA
    Methods Mol Biol; 2019; 1984():39-45. PubMed ID: 31267418
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distribution of X-ray-induced G2 chromatid damage among Chinese hamster chromosomes: influence of chromatin conformation.
    Slijepcevic P; Natarajan AT
    Mutat Res; 1994 Mar; 323(3):113-9. PubMed ID: 7509025
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of bleomycin and radiation in the G2 assay of chromatid breaks.
    Adema AD; Cloos J; Verheijen RH; Braakhuis BJ; Bryant PE
    Int J Radiat Biol; 2003 Aug; 79(8):655-61. PubMed ID: 14555348
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Similar kinetics of chromatid aberrations in X-irradiated xrs 5 and wild-type Chinese hamster ovary cells.
    MacLeod RA; Bryant PE
    Mutagenesis; 1990 Jul; 5(4):407-10. PubMed ID: 2398823
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular targets and mechanisms in formation of chromosomal aberrations: contributions of Soviet scientists.
    Belyaev I
    Cytogenet Genome Res; 2004; 104(1-4):56-64. PubMed ID: 15162015
    [TBL] [Abstract][Full Text] [Related]  

  • 47. G2-checkpoint abrogation in irradiated lymphocytes: A new cytogenetic approach to assess individual radiosensitivity and predisposition to cancer.
    Terzoudi GI; Hatzi VI; Barszczewska K; Manola KN; Stavropoulou C; Angelakis P; Pantelias GE
    Int J Oncol; 2009 Nov; 35(5):1223-30. PubMed ID: 19787278
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Suppression of X-ray-induced chromatid breaks in human tumor cells by introduction of normal chromosome 4.
    Parshad R; Ning Y; Sanford KK
    Cancer Genet Cytogenet; 2000 Apr; 118(1):72-5. PubMed ID: 10731596
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanisms of radiation-induced chromatid breaks.
    Bryant PE
    Mutat Res; 1998 Aug; 404(1-2):107-11. PubMed ID: 9729313
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chromosomal aberrations induced by defined DNA double-strand breaks: the origin of achromatic lesions.
    Harvey AN; Costa ND; Savage JR; Thacker J
    Somat Cell Mol Genet; 1997 May; 23(3):211-9. PubMed ID: 9330632
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chromosomal aberrations and genomic instability induced by topoisomerase-targeted antitumour drugs.
    Degrassi F; Fiore M; Palitti F
    Curr Med Chem Anticancer Agents; 2004 Jul; 4(4):317-25. PubMed ID: 15281904
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Radiation-induced chromosomal aberrations in mouse 10T1/2 cells: dependence on the cell-cycle stage at the time of irradiation.
    Durante M; Gialanella G; Grossi GF; Nappo M; Pugliese M; Bettega D; Calzolari P; Chiorda GN; Ottolenghi A; Tallone-Lombardi L
    Int J Radiat Biol; 1994 Apr; 65(4):437-47. PubMed ID: 7908931
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chromosomal aberration dynamics through the cell cycle.
    Pujol-Canadell M; Puig R; Armengol G; Barrios L; Barquinero JF
    DNA Repair (Amst); 2020 May; 89():102838. PubMed ID: 32171111
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitotic delay in lymphocytes from BRCA1 heterozygotes unable to reduce the radiation-induced chromosomal damage.
    Febrer E; Mestres M; Caballín MR; Barrios L; Ribas M; Gutiérrez-Enríquez S; Alonso C; Ramón y Cajal T; Francesc Barquinero J
    DNA Repair (Amst); 2008 Nov; 7(11):1907-11. PubMed ID: 18765304
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms of the formation of radiation-induced chromosomal aberrations.
    Bryant PE; Riches AC; Terry SY
    Mutat Res; 2010 Aug; 701(1):23-6. PubMed ID: 20348019
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PCC technique reveals severe chromatin lesions and repair in G2-arrested cells after alpha irradiation.
    Hieber L; Lücke-Huhle C
    Exp Cell Res; 1983 Mar; 144(1):57-62. PubMed ID: 6840212
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism of induction of chromosomal aberrations by inhibitors of DNA topoisomerases.
    Palitti F
    Environ Mol Mutagen; 1993; 22(4):275-7. PubMed ID: 8223510
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanisms of the origin of chromosomal aberrations.
    Palitti F
    Mutat Res; 1998 Aug; 404(1-2):133-7. PubMed ID: 9729334
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Time sequence of events leading to chromosomal aberration formation.
    Moore RC; Bender MA
    Environ Mol Mutagen; 1993; 22(4):208-13. PubMed ID: 8223500
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chromatid damage induced by fluorescent light during G2 phase in normal and Gardner syndrome fibroblasts. Interpretation in terms of deficient DNA repair.
    Parshad R; Sanford KK; Jones GM
    Mutat Res; 1985 Aug; 151(1):57-63. PubMed ID: 4022038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.